
GAIA - A Multi-media Multi-lingual Knowledge Extraction and
Hypothesis Generation System

Tongtao Zhang1, Ananya Subburathinam1, Ge Shi1, Lifu Huang1, Di Lu1, Xiaoman Pan1,
Manling Li1, Boliang Zhang1, Qingyun Wang1, Spencer Whitehead1, Heng Ji1

1 Rensselaer Polytechnic Institute
jih@rpi.edu

Alireza Zareian2, Hassan Akbari2, Brian Chen2, Ruiqi Zhong2, Steven Shao2,
Emily Allaway2, Shih-Fu Chang2, Kathleen McKeown2

2 Columbia University
sc250@columbia.edu, kathy@cs.columbia.edu

Dongyu Li3, Xin Huang3, Kexuan Sun3, Xujun Peng3, Ryan Gabbard3, Marjorie Freedman3,
Mayank Kejriwal3, Ram Nevatia3, Pedro Szekely3, T.K. Satish Kumar3

3 Information Sciences Institute, University of Southern California
mrf@isi.edu

Ali Sadeghian4, Giacomo Bergami4, Sourav Dutta4, Miguel Rodriguez4, Daisy Zhe Wang4

4 University of Florida
daisyw@ufl.edu

1 Introduction

An analyst or a planner seeking a rich, deep under-
standing of an emergent situation today is faced
with a paradox - multimodal, multilingual real-
time information about most emergent situations
is freely available but the sheer volume and diver-
sity of such information makes the task of under-
standing a specific situation or finding relevant in-
formation an immensely challenging one. To rem-
edy this situation, the Generating Alternative In-
terpretations for Analysis (GAIA) team at DARPA
AIDA program aims for automated solutions that
provide an integrated, comprehensive, nuanced,
and timely view of emerging events, situations,
and trends of interest. GAIA focuses on develop-
ing a multi-hypothesis semantic engine that em-
bodies a novel synthesis of new and existing tech-
nologies in multimodal knowledge extraction, se-
mantic integration, knowledge graph generation,
and inference.

In the past year the GAIA team has devel-
oped an end-to-end knowledge extraction, ground-
ing, inference, clustering and hypothesis genera-
tion system that covers all languages, data modali-
ties and knowledge element types defined in AIDA
ontologies. We participated in the evaluations of
all tasks within TA1, TA2 and TA3. The system
incorporates a number of impactful and fresh re-
search innovations:

• Generative Adversarial Imitation Learn-

ing for Event Extraction: We developed
a dynamic mechanism – inverse reinforce-
ment learning – to directly assess correct and
wrong labels on instances in entity and event
extraction (Zhang and Ji, 2018). We assign
explicit scores on cases – or rewards in terms
of Reinforcement Learning (RL). This frame-
work naturally fits AIDA’s future setting of
streaming data because we adopt discrimi-
nators from generative adversarial networks
(GAN) to efficiently assign different reward
values to instances on different difficulty lev-
els and different epochs.

• Global Attention: Popular deep learning
methods have modeled Information Extrac-
tion (IE) as sequence labeling problems
based on distributional embedding features,
and led to improvements in quality for some
low-level IE tasks such as name tagging and
event trigger labeling (Chiu and Nichols,
2016; Lample et al., 2016; Zeng et al., 2014;
Liu et al., 2015; Nguyen and Grishman,
2015b; Yang et al., 2016; Nguyen and Grish-
man, 2015b; Chen et al., 2015; Nguyen and
Grishman, 2015a, 2016; Feng et al., 2016b;
Huang et al., 2017a; Zhang et al., 2017a; Lin
et al., 2018; Shi et al., 2018; Zhang et al.,
2018a). However, more advanced extrac-
tion problems such as relation extraction and
event argument labeling require us to cap-

ture global constraints that go beyond the
sentence level, as well as inter-dependency
among knowledge elements (Li et al., 2013;
Li and Ji, 2014; Li et al., 2014). In the GAIA
system we tackle this challenge by introduc-
ing a novel document-level attention mech-
anism (Zhang et al., 2018b) along with lin-
guistic patterns and global constraints.

• Multi-media Multi-lingual Common Se-
mantic Space: We developed a novel com-
mon semantic space for unifying cross-media
and cross-language semantics, and applied it
to encode visual attention to improve entity
extraction (Lu et al., 2018) and event extrac-
tion (Zhang et al., 2017b), and ground entities
detected from texts into images and videos.

• Hierarchical Inconsistency Detection: We
developed a novel inconsistency detection
method. Hierarchical entity matching and
ontologically induced functional dependen-
cies are used to detect logical inconsisten-
cies. Such logical features are also sum-
marised into an inconsistency metric showing
the degree of inconsistency that each hypoth-
esis bares.

• Path Ranking Based Query Answering:
We are developing a novel hypothesis min-
ing approach based on the path ranking algo-
rithm (Lao et al., 2011). Our method creates
a dual path-node embedding space which can
be used to represent complex subgraphs, e.g.,
hypothesis.

• Embedding Based Graph Clustering: We
are developing graph clustering algorithms
based on various features and distance met-
rics. We also explore a novel approach in-
spired by ”entity+graph” hybrid embedding
methods. Such a method can be used to clus-
ter similar/repeating subgraphs in the KG.

2 Multimodal Ontology Creation

A sufficiently expressive and refined ontology is
paramount to the various IE tasks as it defines the
target information that should be extracted. The
ontology must offer a suitable target, with types
that are reasonably disjoint and have a level of
granularity such that a system can feasibly dis-
tinguish between them. Existing ontologies can

be too coarse-grained (ACE or ERE) to offer clar-
ity in settings that have conflicting information as
in AIDA or too fine-grained (YAGO, WordNet,
FrameNet, or VerbNet) to offer systems a clear tar-
get when performing the extraction. Therefore, we
carefully design a multimodal ontology that is able
to accurately capture the AIDA scenario relevant
entities, relations, and events across multiple data
modalities. We approach the development of the
ontology by first creating a text-based ontology to
serve as the foundation for the multimodal ontol-
ogy. In parallel, we identify a set of salient visual
types to form a visual ontology that is most rele-
vant to AIDA. We then refine these ontologies and
merge the textual and visual ontologies to form our
final multimodal ontology.

2.1 Textual Ontology

2.1.1 Entity Ontology

We use the YAGO ontology as a base entity ontol-
ogy which we refine, restructure, and merge with
the AIDA ontology to form our textual ontology.
YAGO offers a greatly expanded set of entity types
that are incredibly expressive and has annotations
from sources, such as Wikipedia, that potentially
already include entities of interest in the AIDA
scenario. We start from a set of 7,309 YAGO type
ontology.

We take a data-driven approach to form our on-
tology. First, we apply our entity discovery and
linking system (Pan et al., 2017) to the AIDA
Seedling data. This system is able to extract en-
tities from the text data and perform fine-grained
typing using the YAGO ontology. With the results
of this system, we compute the frequencies of each
entity type in the AIDA Seedling data. We filter
these types using these frequencies, only keeping
the top 250 most frequent entity types.

The data-driven approach offers the advantage
that it ensures that the entity types included in
the ontology are relevant and occur with relatively
high frequency. However, further refinement is
needed to ensure that the types are robust and truly
cover the knowledge elements important to the
AIDA program. Additionally, it is best to have the
structure of the entity ontology be easily amenable
to the event and relation ontology arguments so as
to ensure that these ontologies may be used in con-
cert with one another. Therefore, we carefully: 1)
refine the set of 250 types and append any relevant
types from the YAGO ontology that were mistak-

enly filtered out; 2) restructure the ontology such
that the top level of the ontology is the same as
the coarse-grained AIDA ontology, which is based
upon ERE.

Starting from the 250 types, we prune types
from the 250 and add back YAGO entity types
based upon four criteria. First, the importance
and/or relevance of a type to the AIDA scenar-
ios. As a result, any truly irrelevant types, such
as “Skidder110605088: A person who slips or
slides because of loss of traction”, are filtered
out. Second, the level of granularity of a type,
which further removes types like “MapProjec-
tion103720443: A projection of the globe onto a
flat map using a grid of lines of latitude and longi-
tude.” Third, a type’s level of coherence with the
existing AIDA ontology and target information, so
if a YAGO type overlaps with an AIDA ontology
type, then we use the AIDA ontology type to pre-
vent redundancy. Lastly, we consider whether or
not a type can only be represented as an entity or if
the information conveyed by the type could be best
represented as a relation or event, such as “Male-
Sibling110286084: A sibling who is male.” We
then map the set of refined types determined us-
ing these criteria to the existing AIDA ontology.
Throughout this process, as mentioned above, we
favor the AIDA ontology types and merge our re-
fined types into this ontology. This merging step
ensures that the entity, event, and relation ontolo-
gies can be coherently used together.

The result of this process is a set of 163 fine-
grained entity types that serve as the foundation
for the multi-modal ontology. These types fit
within the framework of the AIDA ontology, while
still expanding the expressiveness of the ontology.
Furthermore, due to our combination of a data-
driven approach and careful design, we are able to
ensure that the entity types are relevant, coherent,
and are able to capture the entities most important
to AIDA.

2.1.2 Event Ontology
For events, we follow a similar procedure to the
entity ontology. We use the AIDA event ontology
as the base ontology into which we merge exter-
nal event ontologies. The external event ontolo-
gies we consider are: CauseEx, FrameNet (Baker
et al., 1998), VerbNet (Schuler, 2005), and Prop-
Bank (Palmer et al., 2005).

In contrast to the entity ontology, a data-driven
approach to forming the event ontology is less

plausible since the performance of event extrac-
tion systems (Li et al., 2013; Nguyen and Grish-
man, 2015a; Huang et al., 2017b; Zhang et al.,
2017b) is markedly lower than entity discovery
and linking (Pan et al., 2015; Lample et al., 2016;
Pan et al., 2017). Thus, we manually merge and
merge the external ontologies into the AIDA on-
tology.

Our first step is to map the external event types
and argument roles to the AIDA ontology. Dur-
ing this process, it is likely that many of the types
overlap between ontologies. In such instances, we
set an order of precedence for overlapping event
types and argument roles. This approach enables
use to verify that the event types being incorpo-
rated are coherent and fit well within the AIDA
framework. The following ordering is used to re-
solve these cases: 1) AIDA ontology; 2) CauseEx;
3) FrameNet; 4) VerbNet; 5) PropBank. For exam-
ple, if CauseEx has an event type that is matches a
FrameNet type, then we select the CauseEx type.
After merging all 5 event ontologies, we prune and
refine the entire ontology in a similar fashion to the
entity ontology. Specifically, we only keep types
that are: 1) relevant and salient to the AIDA sce-
nario and 2) detectable by a system and human.
This merging and refining process for the event
ontology yields 114 salient event types along with
their arguments.

2.2 Visual Enrichment

Visual data conveys knowledge elements that
rarely appear in text. For instance, a news arti-
cle may refer to an explosion, but not the flames
and smoke that appear in a related image. Simi-
larly, text may refer to an organization, which may
only be visually represented by a logo. Text may
mention rescuing in a disaster, but not refer to the
medical stretcher that is used to carry an injured
person.

In order to extract and represent multimodal
knowledge in a unified language, and discover
links between them, our ontology should cover vi-
sual concepts as well. In this section, we report
how we enriched a text-driven ontology by adding
visual concepts. Overall, we proposed a set of 150
entity types and 25 event types. Out of 150 entity
types, only 26 were already covered by the text-
driven concepts, while 124 were new and were
added to the ontology.

To expand the ontology, we look for concepts

that are: (1) visually expressible, (2) important,
and (3) related to the scenario of interest. If a con-
cept has all the three characteristics, we determine
if it already exists in our ontology, and if not, de-
termine where we can add it in the ontology hier-
archy. In this section, we review three techniques
that we used to discover such concepts, and we
share some examples and insights.

2.2.1 Ontology-driven expansion
To expand the ontology, we search existing visual
ontologies to discover new visual concepts. More
specifically, given a list of visual concepts from a
reference visual ontology, we select the ones that
are important and relevant to the scenario, and add
those to our target ontology. Here we use the list
of 20,000 Open Images v3 (OI3) categories as our
reference ontology, and the 9,000 YAGO types as
our target ontology.

To measure the relevance of OI3 concepts to
the seedling scenario, we extract a doc2vec (Le
and Mikolov, 2014) representation from the AIDA
Seedling Data Collection and Annotation Plan
V2.0 and match it to the word embeddings of the
reference ontology. We use cosine similarity from
each concept embedding to the document embed-
ding to sort the concepts in order of relevance. We
choose a cut-off threshold by subjectively assess-
ing the relevance of the sorted list to the scenario,
which leads to the top 800 concepts being selected.
Then we manually verify the relevance of each of
the top 800 to the scenario, based on subjective in-
tuition. Out of the 800 selected concepts, 306 were
verified to be relevant, which indicates a precision
of 0.38. We further prune this list by manually
removing concepts that are too specific or infre-
quent, leading to 120 visual concepts.

The selected 120 visual concepts are all impor-
tant and relevant visual concepts, and can be good
choices for the target ontology. In the next step we
try to link each of the 120 to the YAGO concepts.
To this end, for each of the 120 selected con-
cepts, we extract semantic embeddings and com-
pare to all YAGO concept embeddings, matching
to the highest similarity. We do this using 4 differ-
ent methods for extracting semantic embeddings,
which results in 4 possibly different matches for
each selected concept. We manually assess the
matches and select the best match. We consider
5 possible cases:

1. The selected visual concept and the YAGO

match are identical, which makes it redun-
dant.

2. The selected concept is a subtype of the
YAGO match, e.g. police car which was
matched to car. In these cases, the selected
concept can be added as a child node to the
YAGO ontology.

3. The YAGO match is a subtype of the selected
concept, e.g. Emergency Vehicle which was
matched to Ambulance. In these cases, the
selected concept can be added as a node be-
tween the YAGO match and its current par-
ent.

4. The selected concept and its YAGO matches
are sibling concepts, e.g. Flight Engineer
which was matched to Pilot. In these cases,
the selected concept can be added as a child
node to the parent node of the YAGO match.

5. The selected visual concept does not have any
of the aforementioned relationships with any
of the 4 matches from YAGO. In that case,
the selected concept is completely new and
should be manually added to YAGO. Exam-
ples are Missile Destroyer and military robot.

Out of the 120 selected visual concepts, 49, 45,
4, 11, and 11 fall under each of the 5 cases re-
spectively. This means, while 49 of the selected
concepts already exist in YAGO, 71 can be added
to enrich YAGO. Moreover, discovering 45 child
nodes compared to 4 parent nodes suggests that
the visual concepts that are not covered by YAGO
are usually more fine-grained than YAGO con-
cepts and belong to the lower levels of the hier-
archy.

2.2.2 Data-driven expansion: bottom up
Whilst the first approach is limited to a prede-
fined source ontology, the second approach starts
from a corpus of scenario-related documents. We
use Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) along with a phrase mining tool (sha) to get
a list of keywords. Each keyword should be fre-
quent enough in the corpus to be picked. There-
fore, they tend to be important and relevant to the
scenario. We follow (Chen et al., 2014) to de-
termine whether each keyword represent a visual
concepts or not. For each keyword, we use the
Google search API to crawl 100 images, and re-
move outliers using the method proposed in (Chen

et al., 2014). then we split the remaining images
into training and test parts, and train a classifier on
the training portion, to separate those images from
other keywords. We determine a keyword as a vi-
sual concept if the accuracy of the trained model
on the test images is above a threshold.

Using LDA and (sha), we find 238 and 336 con-
cepts, out of which 61 and 72 were determined
as visual concepts. Those selected concepts were
linked and added to YAGO using the same ap-
proach described in section 2.1. out of 61 and 72
selected concepts, 19 and 39 concepts were new
(not existing in YAGO), and therefore can be used
to enrich the YAGO ontology. Examples are riot
police, missile launcher, and anti-aircraft.

2.2.3 Data-driven expansion: multimodal
pattern mining

In this method, we utilize our recent work on mul-
timodal pattern mining (Li et al., 2016). This work
aims to find frequent image-text accompaniment
patterns and assign them to a name. It extracts
both visual and textual features (by an AlexNet
and Word2Vec model, respectively), and then gen-
erates transactions to be used in association rule
mining. The transactions are a 1000-D vector
(with 0 or 1 entries each standing for a cluster pre-
senting in the text), and a 256-D vector (with 0 or
1 entries each standing for activation of features
maps of the pool5 layer in AlexNet). The feature
map activations are calculated for each of 6x6 re-
gions of the pool5 layer. Thus, there are 36 trans-
actions for each image-caption pair. After running
association rule mining, the most frequent patterns
are named by TF-IDF and the area corresponding
to that transaction is chosen for the visual repre-
sentation for that name.

We ran this model on a dataset of 61k image-
caption pairs collected in-house from the VOA
website. Since association rule mining needs a
discrimination annotation, we ran event extraction
by trigger words on VOA dataset and grouped it
to 33 ACE events. The model found 225 event-
specific concepts. By manually looking, we chose
28 of them by the following criteria:

1. Event relatedness: The discovered concepts
(pattern names and related images) are rele-
vant to the event, and would be useful enti-
ties or attributes in an event schema for that
event.

2. Visual semantic coherence: The visual pat-

Figure 1: Examples of discovered multimodal patterns.

tern associated with the name is semantically
consistent. Namely, the images shown under
the pattern depict a coherent semantic con-
cept, and not a mix of many different con-
cepts. If the majority of images in a pattern
are consistent, with few outliers, the pattern
is considered to exhibit this property.

3. Text-visual matching: The pattern name cor-
rectly describes the semantic concept of the
visual pattern.

Among the 28 hand-picked concepts, 14 of them
were not present in the YAGO ontology. Exam-
ples are water cannon, protesters, and tear gas, as
shown in Figure 1.

3 TA1 Text Knowledge Extraction

3.1 Approach Overview
As shown in Figure2, the text knowledge extrac-
tion system is a comprehensive end-to-end trilin-
gual system. Note that all components with-
out specifying language is language independent.
Given tri-lingual text documents, we firstly extract
named and nominal mentions using Bi-LSTM-
CRFs extractors, and determine the coreference of
named mentions based on collective entity linking
and NIL clustering, followed by nominal corefer-
ence using Bi-LSTM Attention Network. After
that, relations are extracted using Assembled CNN
extractor, with post-processing via pattern rank-
ing. Meanwhile, with entities as input, English
events are extracted through GAIL, Bi-LSTM-
CRFs and CNN, followed by attribute extraction
through Logistic Regression hedge detection and
syntax-based negation detection. For Russian and
Ukrainian events, their triggers are extracted by
Bi-LSTM extractor, followed by a CNN argu-
ment extractor. After that, coreference between

Relation ExtractionMention Extraction

Event Extraction
English

BiLSTMCRFs
Named Entity Extractor

BiLSTMCRFs
Nominal Extractor

Coreference / Linking

Collective Entity Linking
and NIL Clustering

BiLSTM Attention Network
Nominal Coreference

Postprocessing via
Pattern Ranking

Assembled CNN Extractor

Event Coreference

Syntaxbased
Negation Detection

Logistic Regression
Hedge Detection

Russian and Ukrainian

BiLSTM
Trigger Extractor

CNN
Argument Extractor

Graphbased
Coreference Resolution

Refinement

SecondStage Classifier
KB Propagation

Trilingual
Text Documents

TA1.a KB

TA1.b KB

Human Hypothesis

Generative Adversarial Imitation
Learning (GAIL) Extractor

BiLSTMCRFs and
CNN Extractor

Figure 2: The Architecture of Text Knowledge Extraction

all events is determined with graph-based resolu-
tion. In the end, extraction results of entities, rela-
tions and events composite a document-level KB
for TA1.a. Furthermore, this KB is refined by hu-
man hypothesis based on second-stage classifiers
to generate TA1.b KB. The details of each compo-
nent will be illustrated in following sections.

3.2 Mention Extraction

We consider mention extraction as a sequence la-
beling problem, to tag each token in a sentence
as the Beginning (B), Inside (I) or Outside (O) of
a name mention with one of seven types: Person
(PER), Organization (ORG), Geo-political Entity
(GPE), Location (LOC), Facility (FAC), Weapon
(WEA) or Vehicle (VEH). Predicting the tag for
each token needs evidence from both of its previ-
ous context and future context in the entire sen-
tence. Bi-LSTM networks (Graves et al., 2013;
Lample et al., 2016) meet this need by processing
each sequence in both directions with two separate
hidden layers, which are then fed into the same
output layer. Moreover, there are strong classi-
fication dependencies among tags in a sequence.
For example, “I-LOC” cannot follow “B-ORG”. A
CRF model, which is particularly good at jointly
modeling tagging decisions, can be built on top
of the Bi-LSTM networks. External information
like gazetteers, brown clustering, etc. have proven
to be beneficial for mention extraction. We use
an additional Bi-LSTM to consume the external

feature embeddings of each token and concatenate
both Bi-LSTM encodings of feature embeddings
and word embeddings before the output layer.

We set the word input dimension to 100, word
LSTM hidden layer dimension to 100, character
input dimension to 50, character LSTM hidden
layer dimension to 25, input dropout rate to 0.5,
and use stochastic gradient descent with learning
rate 0.01 for optimization.

3.3 Entity Linking

Given a set of name mentions M =
{m1,m2, ...,mn}, we first generate an initial
list of candidate entities Em = {e1, e2, ..., en}
for each name mention m, and then rank them to
select the candidate entity with the highest score
as the appropriate entity for linking.

We adopt a dictionary-based candidate genera-
tion approach (Medelyan and Legg, 2008). In oder
to improve the coverage of the dictionary, we also
generate a secondary dictionary by normalizing all
keys in the primary dictionary using a phonetic al-
gorithm NYSIIS (Taft, 1970). If an name mention
m is not in the primary dictionary, we will use the
secondary dictionary to generate candidates.

Then we rank these entity candidates based on
three measures: salience, similarity and coher-
ence (Pan et al., 2015).

We utilize Wikipedia anchor links to compute

salience based on entity prior:

pprior(e) =
A∗,e
A∗,∗

(1)

where A∗,e is a set of anchor links that point to
entity e, and A∗,∗ is a set of all anchor links in
Wikipedia. We define mention to entity probabil-
ity as

pmention(e|m) =
Am,e
Am,∗

(2)

where Am,∗ is a set of anchor links with the same
anchor textm, andAm,e is a subset ofAm,∗ which
points to entity e.

Then we compute the similarity between men-
tion and any candidate entity. We first utilize entity
types of mentions which are extracted from name
tagging. For each entity e in the KB, we assign
a coarse-grained entity type t (PER, ORG, GPE,
LOC, Miscellaneous (MISC)) using a Maximum
Entropy based entity classifier (Pan et al., 2017).
We incorporate entity types by combining it with
mention to entity probability pmention(e|m) (Ling
et al., 2015):

ptype(e|m, t) =
p(e|m)∑

e 7→t
p(e|m)

(3)

where e 7→ t indicates that t is the entity type of e.
Following (Huang et al., 2017c), we construct

a weighted undirected graph G = (E,D) from
DBpedia, where E is a set of all entities in DBpe-
dia and dij ∈ D indicates that two entities ei and
ej share some DBpedia properties. The weight of
dij , wij is computed as:

wij =
|pi ∩ pj |

max(|pi|, |pj |)
(4)

where pi, pj are the sets of DBpedia properties
of ei and ej respectively. After constructing the
knowledge graph, we apply the graph embedding
framework proposed by (Tang et al., 2015) to gen-
erate knowledge representations for all entities in
the KB. We compute cosine similarity between
the vector representations of two entities to model
coherence between these two entities coh(ei, ej).
Given a name mention m and its candidate entity
e, we defined coherence score as:

pcoh(e) =
1

|Cm|
∑
c∈Cm

coh(e, c) (5)

where Cm is the union of entities for coherent
mentions of m.

Finally, we combine these measures and com-
pute final score for each candidate entity e.

3.4 Within-document Coreference Resolution
3.4.1 Name Coreference Resolution
For name mentions that cannot be linked to the
KB, we apply heuristic rules described in Table 1
to cluster them within each document.

Rule Description
Exact match Create initial clusters based on mention

surface form.
Normalization Normalize surface forms (e.g., remove

designators and stop words) and group
mentions with the same normalized sur-
face form.

NYSIIS (Taft,
1970)

Obtain soundex NYSIIS representation
of each mention and group mentions
with the same representation longer
than 4 letters.

Edit distance Cluster two mentions if the edit distance
between their normalized surface forms
is equal to or smaller than D, where
D = length(mention1)/8 + 1.

Translation Merge two clusters if they include men-
tions with the same translation.

Table 1: Heuristic Rules for NIL Clustering.

For each cluster, we assign the most frequent
name mention as the document-level canonical
mention.

3.4.2 Nominal Coreference Resolution
We takes in the output of both the entity linking
and NIL Clustering system to predict the nomi-
nal coreference. Our main architecture is based
on the End-to-End Neural Coreference Resolu-
tion(Lee et al., 2017). However, since we already
know the mention types, we further simplify the
coreference system by only computing scores be-
tween nominal and corresponding named entity
with same type.

Given an document D = {y1, y2, ...yn}, named
entity span Sa = {sa1 , sa2 , ..., sam} with its
type Ta = {ta1 , ta2 , ..., tam} and its cluster
Ca = {ca1 , ca2 , ..., cam}, nominal mention span
So = {so1 , so2 , ..., sol} with its type To =
{to1 , to2 , ..., tol}, where yi is individual words, n
is the length of the document, m is the num-
ber of named entity, cai ∈ {1, 2, ..., v}, v is
the cluster size, n is the number of the nom-
inal mention, and each span sai or Soi con-
tains two indices START(i) and END(j). We
compute word representation from a pre-trained
Word2Vector(Mikolov et al., 2013) embeddings
with 1-dimensional convolution neural networks

for character embeddings with window sizes of
2,3,and 4 characters. The character embed-
dings are random initialized and optimized dur-
ing training. compute span representation, we first
use BiLSTMs as encoders to get hidden states
hk,1, hk,−1 of words where 1,−1 represent the di-
rectional of LSTM. For word at position k, its rep-
resentation y∗k = [hk,1, hk,−1]. For each sentence,
the LSTM is independent to improve the program
efficiency.

Then for each span either named entity or
nominal mention, we compute the soft atten-
tion(Bahdanau et al., 2014) over each word in the
span:

αk = ωα · FFNNα(y∗k) (6)

αt,k =
exp (αk)∑END(t)

n=START(t) exp (αt)
(7)

ŷk =

END(k)∑
n=START(k)

αt,k · yt (8)

where ŷk is a weighted sum of word hidden states
in span k, FFNN is the feed-forward neural net-
work. Then the representation of gk a span k is
computed as:

gk = [y∗START(k), y
∗
END(k), ŷk,Φg(t)] (9)

where feature vectors Φg(t) encode size of span k,
and type pf span k.

Finally, to calculate nominal clusters, we first
group each named entity span according to their
cluster. Then for each nominal span go,i, we check
with every name span ga,j with same type. For
each pair of nominal span go,i and name span ga,j ,
we compute score x(i, j):

x(i, j) = wx · [go,i, ga,j , go,i ◦ ga,j ,Φx(i, j)] (10)

where ◦ is the element-wise similarity feature vec-
tors Φx(i, j) encode distance between two span.
We first combine score of same cluster qe for span
soi :

P qeoi =
∑

qe|qe=caj

x(i, j) (11)

where qe ∈ {1, 2, ..., v} We then compute condi-
tional probability P (oi = qe|D) for each cluster:

P (oi = qe|D) = P (oi = qe|Ca) (12)

=
exp (P qe

oi
)∑v

e=1 exp (P qe
oi

)
(13)

We then compute marginal log-likelihood of all
correct clusters by the gold clustering:

l∏
i=1

P (oi = q′e|D) (14)

where q′e is the gold cluster. For English training,
we used ACE2005, EDL2016, EDL2017 to train
the system.

3.4.3 Additional Russian/Ukrainian name
coreference resolution

For Russian and Ukrainian, we performed addi-
tional name coreference as a post-process. We
built a graph where each AIF cluster in the input
was a node. In order, we applied the following
rules to add edges between clusters if:

1. there was an exact match in string or stem
between any name mentions in either cluster

2. there existed two strings from the two clus-
ters where the Levenshtein distance between
them was less than or equal to 2 and the size
of the string or stem was at least 6 or 5, re-
spectively.

3. (person names only) there existed a single-
token string in one cluster which appeared as
the second token of a two-token string in an-
other cluster and did not appear as the sec-
ond token of any other two-token string (e.g.
Smith to John Smith unless Jane Smith also
appears in the document).

4. (person names only) there existed a two-
token string in one cluster which matched
a two-token string in another cluster, ac-
counting for morphological inflection of both
strings.

A coreference cluster was made from each con-
nected component of the resulting graph. ”Stems”
were determined in a simple, heuristic way by
stripping a list of common Russian and Ukrainian
inflectional affixes from the end of the string.

3.5 Relation Extraction
Most AIDA relation types can be mapped to
ACE/ERE ontologies. For these types, we adopt a
convolutional neural network (CNN) based model
(Section 3.5.1). For those new types, such as
Genafl.Sponsor, Measurement.Count,
Genafl.Orgweb, we implement a rule based
system (Section 3.5.2).

3.5.1 Relation Extraction for types in
ACE/ERE

Our relation system takes named entity corefer-
ence results as input, predicting relations between
each entity mention pairs occurred within sen-
tences. We utilize a typical neural network archi-
tecture that consists of Convolution Neural Net-
work (CNN) with piece-wise pooling as our un-
derlying learning model.

Formally, given a source sentence (s, e1, e2, r)
where s = [w1, ..., wm], for each word wik,
we generate a multi-type embedding: ṽi =
[vi, pi, p̃i, ti, t̃i, ci, ηi] where vi denotes a word
embedding. Specifically, we use the Skip-Gram
model to pre-train the word embeddings. pi and
p̃i are position embeddings indicating the relative
distance from wi to e1 and e2 respectively. ti and
t̃i are entity type embedding of e1 and e2. ci is
the chunking embedding, and ηi is a binary digit
indicating whether the word is within the shortest
dependency path between e1 and e2. All these em-
beddings except pre-trained word embedding are
randomly initialized and optimized during train-
ing. Thus the input layer is a sequence of word
representations V = {ṽ1, ṽ2, ..., ṽn}. We then
apply the convolution weights W to each slid-
ing n-gram phrase gj with a biased vector b, i.e.,
g
′
j = tanh(W ·V) + b. Considering different seg-

ments do not share the same weights in composing
the semantic of sentences, we split all the g

′
j into

three parts based on the two entity mentions and
perform piecewise max pooling, after which we
concatenate the representations of the three seg-
ments and feed them into a fully connected layer
and obtain a dense vector, then we use a linear
projection function with a softmax as the relation
classifier to determine the relation type.

Training Details For English training, we man-
ually map DEFT Rich ERE and ACE2005 to
AIDA schema and combine all the filtered re-
sources. For Ukrainian and Russian, we employed
a native speaker to annotate part of the seedling
corpus. To further improve the system perfor-
mance, we also adopted majority vote strategy to
assemble the models for all three languages. Be-
sides, we found that our model can hardly capture
the global information due to instance level train-
ing. Thus, we extract some high confidence fre-
quent relation patterns (Table 2) from training data
as hard constraints to tackle this problem.

Relation type Relation pattern

Employment Person of Organization
Organization origin Organization in Geography

Leadership Geography prime Person
located near Person at Facility
Part whole Organization of the Organization

Manufacture Geography Weapon

Table 2: Examples of frequent relation patterns.

3.5.2 Relation Extraction for New Relation
Types

We implement a rule-based component for
Genafl.Sponsor, Measurement.Count,
Genafl.Orgweb and relations based on the
rules as follows (for English only):

Genafl.Sponsor We first use spacy to ex-
tract the shortest dependency path (SDP) between
two entity mentions. If keywords like ”pledge
allegiance,” ”draws support from,” ”behind” oc-
curred in the SDP and the length of SDP is
shorter than a threshold, we will tag this relation
as Genafl.Sponsor. We augmented a seed
set of manually determined keywords with trigger
words computed by our sentiment system for sen-
timent relations. The sentiment system was devel-
oped by training a relation extraction system on
the Good-For/Bad-For corpus (Deng et al., 2013)
to discover benefactive relations between entities
and events. We split the data into 5 folds and each
time a model is trained on 4 folds, leaving one of
the folds out. To achieve high precision, we fo-
cus on those relation candidates where all of the 5
models predict positive. We also used the attention
mechanism, trained using cue words in GFBF, to
extract the trigger words: we consider the most at-
tended word by each of the 5 model, and then take
the majority vote across models.

Measurement.Count We first apply Stanford
CoreNLP to extract all NUMBER N . Then for
ni ∈ N , we check if the word after ni. If it is
a part of a named entity extracted by our EDL sys-
tem, we tag the relation between between them as
Measurement.Count.

Genafl.Orgweb Our EDL system can detect
urls as ORG and cluster them with other name men-
tions. We tag those urls as Genafl.Orgweb of
the ORG named entities.

3.6 Event Extraction
3.6.1 Event Extraction with Generative

Adversarial Imitation Learning
We use Generative Adversarial Imitation Learn-
ing (GAIL) – an inversed reinforcement learning
framework – to extract event triggers and detect
argument roles. Event extraction consists of two
steps: 1. trigger labeling: the system detects trig-
ger words or phrases from natural language sen-
tences; 2. argument role labeling: the system de-
termines the relation between the triggers and en-
tities detected from Section 3.2.

Q-Learning for trigger labeling We use Q-
learning to label the triggers from sequences of
raw text tokens.

We have Q-tables and Q-values

Qsl(st, at) = fsl(st|st−1, . . . , at−1, . . .), (15)

where st denotes a state (of feature) for a token t.

st =< vt, at−1 > . (16)

and at denotes an action (or label) from the agent
(or extractor).

ât = arg max
at

Qsl(st, at). (17)

The vt in Equation 16 is the context embedding
of the token t. We use local embeddings concate-
nated with the following: 1. 200-dim Word2Vec
embeddings, 2. 50-dim representation for Part-
of-Speech (PoS) tags, 3. 100-dim of token em-
beddings randomly initialized and updated in the
training phase, 4. 32-dim character embeddings.
We adopt a Bi-LSTM to calculate vt. We uti-
lize another mono-directional LSTM to calculate
Equation 15 and determine the labels from Equa-
tion 17.

In the training phase, we use Bellman Equation
to update Q-values and Q-tables:

Qπ
∗
sl (st, at) = rt + γmax

at+1

Qsl(st+1, at+1), (18)

where rt denotes a reward based on the current
state st and action at.

The word embeddings and parameters on
LSTMs are updated by minimizing the object

Lsl =
1

n

n∑
t

∑
a

(Q′sl(st, at)−Qsl(st, at))2,

(19)
where Q′ denotes the updated Q-table from Equa-
tion 18.

Policy-gradient for argument role labeling
For the argument role labeling, we use another RL
algorithm, policy gradient.

In this scenario, we also define a state (feature)
for the agent (extractor)

str,ar =< vttr ,vtar , attr , atar ,fss >, (20)

where vs are the context embedding as in Equa-
tion 16 and fss denote a sub-sentence embedding
calculated using a Bi-LSTM which consumes the
sequence of context embedding between the trig-
ger and the argument.

We feed the state representation into an MLP to
obtain Q-table which represents probability distri-
bution of actions and we can determine the argu-
ment role with

âtr,ar = arg max
atr,ar

Qtr,ar(str,ar, atr,ar). (21)

We also assign a reward R for the action (argu-
ment role) and we train the models by minimizing

Lpg = −R logP (atr,ar|str,ar). (22)

Dynamic Reward Estimation with GAN Our
framework includes a reward estimator based on
GAN to issue dynamic rewards with regard to the
labels committed by the event extractor as shown
in Figure 3. The reward estimator is trained upon
the difference between the labels from ground
truth (expert) and extractor (agent). If the extractor
repeatedly

The original GAN has a pool of real data, a
generator G and a discriminator D, while in our
framework, the real data is ground truth (expert),
the generator G is the agent, and the discriminator
D is a reward estimator.

To train the discriminator, we minimize the fol-
lowing object function

LD = −(E[logD(s, aE)]+E[log(1−D(s, aA))]),
(23)

where s is the state representation from Equa-
tion 16 and 20.

We use a linear transform to estimate rewards

R(s, a) = 20 ∗ (D(s, a)− 0.5), (24)

3.6.2 Event Extraction with Bi-LSTM
Trigger Labeling Event trigger detection re-
mains a challenge due to the difficulty at en-
coding word semantics and word senses in var-
ious contexts. Previous approaches heavily de-
pend on language-specific knowledge. However,

Masih's alleged comments of blasphemy are punishable by death under ...

Epoch 1 Epoch 10 Epoch 20
Epoch 30

 Epoch 40

Reward
Estimator

Model

Sentence ExecutePER

Person

-0.9
Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

Defendant

Reward
Estimator

Model

Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

-2.3 Reward
Estimator

Model

Masih's

... death ...

-5.7Reward
Estimator

Model

Ex
ec
ut
e

O
Di
e

PE
R

Ex
ec
ut
e

O

Di
e

PE
R

6.4Reward
Estimator

Model

... are

punishable by

...

Ex
ec
ut
eO

Se
nt
en
ce

Ex
ec
ut
e

O
Se
nt
en
ce

1.7Reward
Estimator

Model

Ex
ec
ut
eO

Di
e

PE
R

Ex
ec
ut
eO

Di
e

PE
R

-5.5

... by death

under ...

... by death

under ...

... by death

under ...

... by death

under ...

Pl
ac
e

N/
A

Pe
rs
on

Ag
en
t

Pl
ac
e

N/
A

Pe
rs
on

Ag
en
t

Figure 3: A diagram illustrating the dynamic rewards estimated by the GAN in the GAIL event extractor.

compared to English, the resources and tools for
Chinese are limited and yield low quality. A
more promising approach is to automatically learn
effective features from data, without relying on
language-specific resources.

We developed a language-independent neural
network architecture: Bi-LSTM-CRFs, which can
significantly capture meaningful sequential infor-
mation and jointly model nugget type decisions for
event nugget detection. This architecture is similar
as the one in (Yu et al., 2016; Feng et al., 2016a;
Al-Badrashiny et al., 2017).

Given a sentence X = (X1, X2, ..., Xn) and
their corresponding tags Y = (Y1, Y2, ..., Yn), n
is the number of units contained in the sequence,
we initialize each word with a vector by looking
up word embeddings. Specifically, we use the
Skip-Gram model to pre-train the word embed-
dings (Mikolov et al., 2013). Then, the sequence
of words in each sentence is taken as input to the
Bi-LSTM to get meaningful and contextual fea-
tures. We feed these features into CRFs and maxi-
mize the log-probabilities of all tag predictions of
the sequence.

Argument Labeling For event argument extrac-
tion, given a sentence, we first adopt the event
trigger detection system to identify candidate trig-
gers and utilize the EDL system to recognize all
candidate arguments, including Person, Location,
Organization, Geo-Political Entity, Time expres-
sion and Money Phrases. For each trigger and
each candidate argument, we select two types of
sequence information: the surface contexts be-
tween trigger word and candidate argument or the

shortest dependency path, which is obtained with
the Breath-First-Search (BFS) algorithm over the
whole dependency parsing output, as input to our
neural architecture.

Each word in the sequence will be assigned with
a vector, which is concatenated from vectors of
word embedding, position and POS tag. In order
to better capture the relatedness between words,
we also adopt CNNs to generate a vector for each
word based on its character sequence. For each de-
pendency relation, we randomly initialize a vector,
which holds the same dimensionality with each
word.

We encode the following two types of sequence
of vectors with CNNs and Bi-LSTMs respectively.
For the surface context based sequence, we utilize
a general CNNs architecture with Max-Pooling to
obtain a vector representation. For the dependency
path based sequence, we adopt the Bi-LSTMs with
Max-Pooling to get an overall vector representa-
tion. Finally we concatenate these two vectors and
feed them to two softmax functions: one is to pre-
dict whether the current entity mention is a can-
didate argument of the trigger, and the other is to
predict final argument role.

Training Details For all the above components,
we utilize all the available event annotations from
DEFT Rich ERE and ACE2005 for training.

3.6.3 Event Extraction for New Event Types
We implemented a system, for the event types not
included in English training data, to map framenet
to AIDA ontology (Table 3).

We tag frame elements as event arguments only

Framenet event type AIDA event type

Conquering Transaction.TransferControl
Criminal investigation Justice.Investigate

Sign agreement Government.Agreements
Inspecting Inspection
Destroying Existence.DamageDestroy
Damaging Existence.DamageDestroy

Table 3: Mapping from Framenet to AIDA event ontol-
ogy.

if they overlap with named entities in our EDL out-
puts.

For Government.Vote and
Government.Spy event types, which can-
not be mapped from Framenet, we implement
a rule-based system. We detect event triggers
based on fuzzy string match with keywords 1.
And we further decide event arguments based on
dependency trees (Table 4).

Event Type Syntactic Relation Argument Role

Government.Vote

nsubj Voter
nmod:for Candidate

dobj Candidate
nmod:in Place Date

Government.Spy

nsubj Agent
nmod:for Beneficiary

dobj Target
nmod:in Place Date

Table 4: Dependency Tree-based Argument
Role identification for Government.Vote and
Government.Spy events.

3.6.4 Russian and Ukrainian Event
Extraction

Event extraction for Russian and Ukrainian tex-
tual data is performed using a two-stage language-
independent model. The first stage uses a Bi-
LSTM (Bi-directional Long Short Term Memory
network) which takes pre-trained word embed-
dings of each word in the sentence as input and
generates a vector representation of each word in
the context of the sentence. To capture the struc-
tured label sequences, such as B-attack followed
by I-attack in the case of event triggers like shot
down, we use the vectors from the Bi-LSTM with
a Softmax classifier to obtain tag predictions for
each word.

The second stage uses a Convolutional Neu-
ral Network (CNN) followed by a Softmax clas-

1Government.Vote: vote, ballot, poll;
Government.Spy: spy

sification (Kim, 2014) to label the arguments of
the event mention. Each input to the CNN is a
portion of the sentence (’sub-sentence’) between
a named entity mention and the trigger word. If
there are multiple named entities present in a sen-
tence containing a trigger, all such sub-sentences
are retrieved. Here, each word in an input sub-
sentence be represented by its word embedding.
We concatenate an additional dimension to each
word here to represent its trigger type if it is a
trigger word. This forms the input to the CNN.
We use filters of size 3, 4, and 5 in the convolu-
tion layer, followed by a max-pooling layer, and
a fully-connected layer to generate a single vector
representation of the input sub-sentence. We then
use this vector and perform a Softmax classifica-
tion to identify and label arguments.

Training Details For Russian and Ukrainian
languages, due to the absence of relevant train-
ing data, we use a native speaker to annotate three
hundred documents in each language. This anno-
tation is performed using the Brat annotation tool
(Stenetorp et al., 2012), which we set up to allow
annotations using the AIDA Event Ontologybrat.
These annotated files serve as the training and de-
velopment sets for the above event extraction sys-
tem.

3.6.5 Event Attribute Extraction
Hedge Detection We apply an uncertainty clas-
sifier (Vincze, 2015) to detects the uncertainty of
each sentence. Negation Detection We apply
negation detection toolkit (Gkotsis et al., 2016),
given a sentence and a key-word (e.g. event trig-
ger) as inputs.

3.7 Event Coreference Resolution

We apply our language-independent within-
document Event Coreference model to all English,
Russian and Ukrainian. The model is based on
our previous work (Al-Badrashiny et al., 2017; Yu
et al., 2016; Hong et al., 2015; Chen and Ji, 2009).
We view the event coreference space as an undi-
rected weighted graph in which the nodes repre-
sent all the event nuggets and the edge weights
indicate the coreference confidence between two
event nuggets. And we apply hierarchical cluster-
ing to classify event nuggets into event hoppers.
To compute the coreference confidence between
two events, we train a Maximum Entropy classi-
fier using the features listed in Table 5.

Features Remarks(EM1: the first event mention, EM2: the second event mention)

type subtype match 1 if the types and subtypes of the event nuggets match
trigger pair exact match 1 if the spellings of triggers in EM1 and EM2 exactly match
Distance between the wordembedding quantized semantic similarity score (0-1) using pre-trained word embedding ()
token dist how many tokens between triggers of EM1 and EM2 (quantized)
Argument match argument roles that are associated with the same entities
Argument conflict Number of argument roles that are associated with different entities

Table 5: Event Coreference Features.

3.8 Refinement with Human Hypotheses

A human hypothesis is a small topic-level con-
nected knowledge graph. Given five human hy-
potheses, we generate TA1.b KBs conditioned
upon each hypothesis through entity refinement,
relation refinement, and event refinement.

Entity Refinement For each entity in human
hypothesis, we link it to the entities in TA1.a KB
based on its name string. If one entity appears in
hypothesis but not in TA1.a KB, we propagate KB
by adding new entities. If the entity has several
types in one hypothesis, we will select the type of
highest frequency. If there are conflicts between
human hypothesis and TA1.a KB, we trust the one
with longer name string. For example, if an entity
in human hypothesis is ‘Kramatorsk airport’ and
the corresponding entity mention in TA1.a KB is
‘airport’, we will update ‘airport’ to ‘Kramatorsk
airport’. Besides, to better support relation event
refinement, we also update name translations from
English to Russian and Ukraine after entity refine-
ment.

Relation Refinement Given a relation in a hu-
man hypothesis, we propagate relations based on
the co-occurrence sentences of its head and tail
entities. There are four steps to generate these
sentences. Firstly, we enrich hypothetical rela-
tions using entity clusters in human hypothesis,
i.e., entity coreference information. Namely, more
hypothetical relations are constructed by substi-
tuting each entity with its coreferential entities.
Secondly, three-way translations are done to fur-
ther enrich hypothetical relations. Specifically, for
each language, apart from the original hypotheti-
cal relations, we also add the translated ones from
other two languages. Note that English serves as
a bridge for the translation between Russian and
Ukraine. Thirdly, we link head and tail hypotheti-
cal entities to our system’s entities following Sec-
tion 5.1. Fourthly, we gather all entity mentions of
the above linked entities to find co-occurrence sen-
tences, including named entity mentions, nominal

mentions and pronominal mentions.
We trained a second-stage binary classifier

which predicts whether these exists meaningful
relation type in a given sentence. Compared
with the first-stage classifier(depicted as S1) (Sec-
tion 3.5.1), most parts of the second-stage clas-
sifier (depicted as S2) including features are the
same except for the output layer. In testing phase,
we adopt three different strategies to refine re-
lations. (1) Regarding conflict results which S1
and S2 both predict meaningful relations (relation
types defined in AIDA schema), we trust the bi-
nary classifier due to the high quality of human
hypothesis; (2) In these cases which S1 predicts
meaningful relation type but S2 predicts no rela-
tion, we remove the S1 relation results; (3) For
cases in which S1 predict no relation, We adopt
the S1 results because the S2 classifier tends to be
too aggressive.

Event Refinement Event refinement is based
on the sentences which are extracted according
to the co-occurrence of each event type and ar-
gument provided by human hypothesis. The oc-
currence of each event type is based on the trig-
gers detected by our event extraction systems. For
each sentence containing an event trigger, we link
each argument entity to entity mentions in our
generated knowledge graph similar to relation re-
finement, i.e., through entity cluster-based enrich-
ment, three-way translations, entity linking and
entity mention linking. If one of the entity men-
tions is also in the sentence, the sentence will be
extracted. Based on these sentences, we find some
rules to propagate events. For example, for event
type ‘Transaction.TransferOwnership’, if the ar-
gument role is ‘Thing’, we add this argument to
our extracted event.

3.9 Experiments

3.9.1 Performance Overview

A table to show component, benchmark data set,
results.

Components Benchmark # of Training Sents # of Dev Sents Our F1 (%) SOTA F1 (%)

Mention Extraction CoNLL-2003 23,499 5,942 91.81 91.35
Nominal Coreference ACE2005&EDL 721 21 67.6 N/A

Relation Extraction
English ACE&ERE 61,857 6,879 65.6 N/A
Russian AIDA Seedling 37,179 4,137 72.4 N/A
Ukraine AIDA Seedling 17,001 1,896 68.2 N/A

GAIL Trigger ACE2005 14,837 863 72.9 69.6
Event Extraction Argument ACE2005 14,837 863 59.0 57.2

Bi-LSTM Trigger ERE 45,801 5,088 65.41 N/A
Event Extraction Argument ERE 3,240 1,056 85.02 N/A

Russian Trigger AIDA Seedling 3,703 1,233 56.15 N/A
Event Extraction Argument AIDA Seedling 3,456 1,480 58.16 N/A

Ukrainian Trigger AIDA Seedling 3,500 1,166 58.98 N/A
Event Extraction Argument AIDA Seedling 3,268 1,398 61.13 N/A

Table 6: List of Components for Text Knowledge Extraction

3.9.2 What Works

We conducted ablation experiments on each fea-
ture components for relation extraction. Among
the linguistic features we used, the entity type and
position features contribute the most to the perfor-
mance. For example, the relation extraction per-
formance decreases by about 8% if removing the
entity type feature. We analyze the reasons and
find that the entity type feature is vital to ensure
the types of two entity mentions to be consistent
with the hard entity type constraint of each rela-
tion type defined in AIDA schema.

For instances with ambiguity, our dynamic re-
ward function can provide more salient mar-
gins between correct and wrong labels: e.g.,
“... they sentenced him to death ...”, with the
identical parameter set as aforementioned, reward
for the wrong Die label is −5.74 while cor-
rect Execute label gains 6.53. For simpler
cases, e.g., “... submitted his resignation ...”, we
have flatter rewards as 2.74 for End-Position,
−1.33 for None or −1.67 for Meet, which are
sufficient to commit correct labels.

3.9.3 Remaining Challenges

Losses of scores are mainly missed trigger words
and arguments. For example, the Meet trigger
“pow-wow” is missed because it is rarely used to
describe a formal political meeting; and there is
no token with similar surface form – which can
be recovered using character embedding – in the
training data.

We observe some special erroneous cases due to
fully biased annotation. In the sentence “Bombers
have also hit targets ...”, the entity “bombers” is

mistakenly classified as the Attacker argument
of the Attack event triggered by the word “hit”.
Here the “bombers” refers to aircraft and is con-
sidered as a VEH (Vehicle) entity, and should be
an Instrument in the Attack event, while
“bombers” entities in the training data are anno-
tated as Person (who detonates bombs), which
are never Instrument. This is an ambiguous
case, however, it does not compromise our claim
on the merit of our proposed framework against
ambiguous errors, because our proposed frame-
work still requires a mixture of different labels to
acknowledge ambiguity.

4 Visual Knowledge Extraction

Recent advances in computer vision have made
it possible to extract various types of knowledge
from images and videos, e.g. object detection
and tracking, face detection and recognition, hu-
man activity understanding, etc. Nevertheless, it
is challenging to create a framework that extracts
knowledge from various types of media includ-
ing visual, communicates information in a uni-
fied language for higher-level analysis, and cross-
references knowledge elements between modali-
ties.

Our first step toward such a unified system was
the creation of a multimodal ontology that covers
essential visual concepts. In this section, we sum-
marizes the system we developed for parsing vi-
sual knowledge from images and videos. We uti-
lize an ensemble of state-of-the-art object detec-
tion models to detect, localize, and categorize a va-
riety of entity types in still images and video key-
frames. Next, we use face verification and object

instance matching models to link and coreference
the detected entities. The methods are elaborated
in the following.

4.1 Entity Detection

Entities can appear in an image, either as physi-
cal objects (e.g. Vehicle), or as scenes (e.g. Air-
port). To detect physiscal objects, we utilize Faster
RCNN (Girshick, 2015), which is the current state
of the art in object detection. We use three Faster
RCNN models trained on Open Images (Krasin
et al., 2017) v2 (600 classes), MSCOCO (Lin
et al., 2014) (80 classes), and Pascal VOC (Ev-
eringham et al., 2010) (20 classes) datasets. These
models can accurately detect, localize, and cat-
egorize hundreds of object types. Nevertheless,
supervised models like Faster RCNN come with
a considerable limitation: they require a massive
dataset of images with full bounding box annota-
tion, which is not available for every visual con-
cept.

To detect objects types that are not covered by
publicly available bounding box datasets, we use
a Weakly Supervised Object Detection (WSOD)
technique (Zhou et al., 2016), which requires only
image-level annotation for training. We train that
model on a subset of 250 classes from OpenIm-
ages v4, that are selected using the techniques de-
scribed in Section 2.2.1. Since this method works
based on image-level labels and is not limited by
bounding boxes, it can be used to recognize scenes
and image-level events as well. Therefore, we in-
clude scene and event types in the 250 selected
classes.

To integrate these 4 models, we perform sev-
eral post-processing steps. The first challenge is
that each model generates a distribution across
its own classes, and since the list of classes are
not shared between models, the probability values
cannot be compared to each other. To fix this, we
rescale confidence scores generated by each model
to a unified distribution that is shared for all mod-
els. We use a reference dataset, randomly sam-
pled from OpenImages, and apply all models on
that. Then for each object type, for each model, we
collect all the correctly detected bounding boxes
and fit a Gaussian distribution to the confidence
scores. We rescale the confidence values by a con-
stant multiplication and addition to adjust mean
and standard deviation to a fixed value for all mod-
els and categories.

Furthermore, we merge bounding boxes with
the same type if their overlap is higher than a
threshold. We also propagate class labels up the
hierarchy tree and remove those detections that are
outside our ontology.

In addition to our object detection ensemble, we
utilize MTCNN (Zhang et al., 2016) which is a
3-stage CNN, to detect and align faces. Detected
faces are linked with any person object detected by
the ensemble if the intersection of the two bound-
ing boxes has a high ratio over the total face area.

4.2 Face Recognition
We extract facial features from each detected face
using the FaceNet (Schroff et al., 2015) model
trained on the CAISA dataset. These features are
compared with our database of facial features and
matched to the closest person if the distance be-
tween features are below a threshold. To construct
a database of facial features, we first create a list of
people that are helpful to detect. We collect named
person annotations from the seedling data and use
as a seed to discover other relevant names from
DBPedia. To do that, we find all incoming and
outgoing relations to/from each seed name, and re-
peat for 2 hops. We filter based on a set of rules to
only maintain highly relevant names. This results
in a list of 388 people that are potentially relevant
to the scenario.

After that, we use the Google search API to col-
lect images for each named person. Finally, we ex-
tract FaceNet features from each image and store
in the database. In test time, we compare the fea-
tures of a query face to all entries in our database
and compute the average distance for each person.
We link the query to the closest person if the aver-
age distance is less than a threshold.

4.3 Visual Entity Coreference
We use the DBSCAN clustering algorithm (Ester
et al., 1996) on features extracted from entities of
same type, to link mentions of the same entity in-
stance. The linking accuracy highly depends on
the quality of features. For entities of type per-
son, we used FaceNet features, which are proven
to be highly accurate in various face recognition
and verification tasks (Schroff et al., 2015). For
other entity types, instance-level feature represen-
tation is still an unsolved research issue.

We use a similar approach to FaceNet, training
a CNN using triplet loss, to learn a Euclidean met-
ric where images of the same instance are closer to

each other compared to other instances of the same
type. To come up with such triplets, we use the
Youtube BoundingBoxes dataset which was orig-
inally intended for object tracking. Each video
comes with bounding box annotations for certain
objects at every frame. For each triplet, we ran-
domly sample two frames of an object tracklet as
positive images of the same object instance, and
randomly choose a bounding box from other track-
lets (of the same type), as a negative example.

Another type of coreference resolution was
done by merging highly overlapping bounding
boxes in an image. For example, if a face bound-
ing box falls within a human body bounding box,
we link those to indicate they represent the same
person entity. Moreover, if a grounded text entity
overlaps with a bounding box that is detected by
our object detection system, we link those.

5 Cross-Media Coreference

In this section, we demonstrate how visual knowl-
edge is integrated with textual knowledge via
cross-modal grounding. We propose a model for
visual grounding of text phrases that outperforms
the state of the art. The input to this model is an
image and sentence pair, and the output will be a
localization and relevance score for each word in
the sentence. The model can also localize phrases
instead of words, if phrase boundaries are pro-
vided. Figure reffig:grounding-diag illustrates the
model block diagram. It consists of visual and tex-
tual branches, each extracting local and global fea-
tures.

More specifically, we use a PNASNet (Liu
et al., 2017) and an ELMO (Peters et al., 2018)
as our visual and textual branches respectively.
PNASNet produces a global image feature at its
output and several levels of local feature maps at
its intermediate layers. We use one of the mid-
dle layers where each local feature represents an
image region. ELMO produces local features for
each word while also a global feature for the sen-
tence. We compute correlations between all word
features and all image region features, which re-
sults in a heatmap for each word.

The model is trained on Flickr30k (Young et al.,
2014), by maximizing overall image to sentence
matching score between relevant image-caption
pairs, and minimizing that for non-relevant image-
caption pairs. Qualitatively, we observe great im-
provement over the previous baseline (Engilberge

Figure 4: Block diagram of the proposed visual
grounding method.

Figure 5: Example grounding results.

et al., 2018), which was the state of the art in vi-
sual grounding. Example results on the seedling
data are illustrated in Figure 5.

6 Cross Document Knowledge Element
Linking

Our approach to cross-document knowledge ele-
ment linking uses connected component detection.
We formulate a graph relies heavily on informa-
tion associated with the knowledge elements by
TA1. For entities, we apply the following rules:

1. Within a single document, we link nodes that
belong to the same TA1-identified cluster (i.e.
we respect within document coreference de-
cisions from TA1).

2. We link those entities for which TA1 associ-
ated the same external link.

3. We use string similarity to cluster named en-
tities. Because pair-wise string matching of
all named entities is not scalable, we apply
blocking and only compare those entities that
meet one of the following conditions: (a) they
share the first three characters;(b) they meet
a min-hashing requirement. Within a block,
two entities are linked if they meet all the fol-
lowing criterion: (a) they are of same type

and that type is one of: GPE, LOC, PER,
ORG, Facilities; (b) neither entity has a reli-
able external link The jaro-distance is above
a threshold(0.9).

7 Question Answering

Both the document level and the corpus level tasks
are evaluated via question answering using three
types of queries: 1. Class-based queries: Find
all instances of a known class in a document (for
TA1) or the corpus (for TA2). For example, find all
organizations. 2. Zero-hop queries: Given a spe-
cific instance of an entity, find all instances of that
entity in a document (for TA1) or the corpus (for
TA2). For example, find all instances of the PER-
SON entity indicated by bounding box A,B,C,D.
3. Graph-queries: Given an instance (where in-
stance is specified using offsets/bounding box as
in a zero-hop query) and a graph of relations con-
nected to that instance, find the nodes that could be
included in the graph. Class-based queries are an-
swered with a simple SPARQL query of the KB.
Zero-hop queries are answered with slight relax-
ation to the offsets and/or bounding box of the
query (this accounts for errors in exact extent).
Answering the graph queries is more complex,
even with state-of-the-art extractions from TA1,
we expect there to be missing information in the
KB. Matching the full graph (often more than 50
edges) is unlikely. To match a graph query, we first
use the relaxation strategies described for zero-
hop queries on any entry-points. If simple, extent-
based relaxation fails to match, we further relax
the query by using exact string match the name at-
tribute in the KB within a single document. Note
that if all of these relaxations fail, we will not find
any answers to the query. Assuming that we find
an entrypoint, we attempt to match the full graph.
Much of the time, this fails. Our first relaxation
attempts to find a ’backbone’ of the query by elim-
inating those nodes that are connected to only one
other node in the graph. We then attempt to match
the backbone. In some cases, nodes are connected
to the graph by more than one edge. If we are
unable to match the full backbone, we try an alter-
native relaxation strategy where we allow a match
if any (rather than all) edges linking a node con-
nect. As final relaxation strategy, we combine the
backbone approach with the match any approach.
We use the same strategies for both TA1 and TA2.
For TA1, because we limit string based match to

within a single document (to avoid e.g. conflating
all John Smiths), we will not find answers where
the entry point entity was not found in the rele-
vant document. For TA2, we rely on system cross-
document linking to enable answering questions
across documents.

8 HypoGator: Alternative Hypotheses
Generation and Ranking

In this section we provide an overview of HypoGa-
tor, our hypothesis generation system. HypoGa-
tor relies on the KB constructed from combining
and aligning of the document level knowledge ele-
ments. Using multiple features and inconsistency
detection methods, it extracts coherent and con-
sistent hypothesis. It finally returns a sorted list
of the alternative hypothesis relevant to the query.
We describe the major components of our system
in the following sections.

8.1 Hypotheses Generation and Ranking

The input KB is first converted from AIDA Inter-
change Format (AIF) to our internal format, where
each edge in the KB is represented by (event,
role, entity, properties). We also
find entry points and their roles from the informa-
tion need .xml files.

The major components of Hypogator’s pipeline
include:

Extraction: Find all the nodes in the graph that
match any of the entry points from the information
need. We used string similarity metrics in combi-
nation with exact text offset matching to find all
the matches. The set of matched entities are called
seeds.

Expansion: Based on heuristical methods, each
of the seed entities is locally expanded to a sub-
graph. This subgraph contains several nodes and
events that are in the neighborhood of the seed.

Exposition: During the training phase (on the
annotated data) multiple features that are indica-
tive of coherence and relevance were developed
and identified. For example, one of the features
measures how similar a given subgraph is to the
query; another feature approximates coherence us-
ing pair-wise vertex connectivity.

These features are then aggregated to calculate
a score for each subgraph. Finally, the subgraphs
are sorted using this score.

TA2 KB

Information Need

Query-Processor

String/offset Similarity
Entry Point Extraction

Candidate Hypothesis Generator

Local Graph Expansion
A* Algorithm

Inconsistency feature

Hierarchical Logical
Inconsistency Detection

Coherence feature
Query Relevance

Edge Intensity
Entity Correlation

Hypothesis Clustering

Subgraph Similarity
Graph Embedding

AIDA Hypothesis

Confidence Computation

Score calculation
Ensambler

Figure 6: HypoGator: hypothesis mining and ranking, the Architecture.

8.2 Inconsistency Detection
The inconsistency detection focuses on identify-
ing conflicting information in multiple event and
relationships represented as tuples. Such incon-
sistency may be inferred from either negated tu-
ples or conflicting information provided within
the tuples’ fields. Another source of inconsis-
tency comes from event and filler types associated
with the wrong field information according to the
project’s ontology. We then compare events after
a transformation phase under ontology-extracted
functional dependencies, which allows us to select
the fields that need to be compared. The field in-
consistency is detected through the use of hierar-
chical information extracted from common sense
networks. Such data allows detecting whether all
the entities and fillers occurring in the same event
or relationships are compatible – that is when they
appear within the same is-a/part-of generalisation
path – or not.

Each hypothesis is associated to an inconsis-
tency function IMIc : K → R+∞

≥0 (Hunter and
Konieczny, 2008), which summarises the amount
of the found inconsistencies over a real positive
number. Such function weights the number of over
the minimal inconsistent sets in MI(H) for each
hypothesis H , and it is defined as follows:

IMIc(H) =
∑

M∈MI(H)

1

|M |

We chose such function because it satisfies some
relevant rationality postulates such as super ad-
ditivity, attenuation and irrelevance of syntax.
Moreover, such function overcomes the problems
of the lottery paradox (Kyburg, 1961) by assign-
ing a stronger weight to inconsistencies that can

be drawn from few pieces of evidence.

8.3 Hypotheses Clustering

Due to the nature of AIDA’s data (e.g., multiple
documents about the same hypothesis, and noise
in TA2s alignment), it is possible to have multiple
subgraphs representing the same hypothesis. Our
system uses subgraph clustering to prune duplicate
hypothesis.

Our focus on the hypothesis and having a
smaller data size compared to what TA2 has to
work with, enables us to perform more expensive
subgraph level clustering. We compute a simi-
larity score for each pair of generated subgraph-
hypothesis. Entity features, TA2’s alignments and
the graph structure, are used to compute this score.
We finally use spectral clustering to cluster the set
of hypothesis into K clusters.

9 Hypothesis Generation at ISI

TA2 generates a full Knowledge Graph (KG).
Given such a KG and a file containing the “infor-
mation need” that identifies a topic in the KG, the
steps required to generate the top k hypotheses in
TA3 are as follows.

Retrieve the knowledge elements relevant to
the Entry Points. We convert the XML file con-
taining the information need to SPARQL and per-
form a query on the full KG generated by TA2.

Convert the full KG to data in our own inter-
nal format. The data in this new format only con-
tains information of the knowledge elements that
are used for reasoning, such as types of Entities,
Events, and Relations, as well as the arguments of
these Events and Relations. Each of these Entities,
Events, and Relations has a confidence value.

Generate mutual exclusion constraints.
Based on the LDCOntology, we generate two
additional types of mutual exclusion constraints:
(a) cardinality constraints, and (b) domain con-
straints. For some types of Events or Relations,
some of their arguments can only have a limited
number of distinct objects. For example, given an
Event Life.Born, the argument Life.Born Time
can have only one object. Such constraints qualify
as cardinality constraints. For each type of Event
or Relation, each argument can accept only
specific types of objects. Such constraints qualify
as domain constraints.

Represent the new data as weighted con-
straints. In our approach, an assertion in the KG
is not automatically deemed to be true in a hy-
pothesis. This is because it has a certain confi-
dence value associated with it. Instead, a hypothe-
sis fixes the truth value of each assertion, i.e., it is
a subset of the full KG. We therefore treat each as-
sertion as a Boolean variable with domain {0, 1}.
Here, ‘0’ and ‘1’ represent ‘False’ and ‘True’, re-
spectively. For each Boolean variable v corre-
sponding to an assertion with confidence value p,
we add a unary weighted constraint with weights
− log (1 − p) and −log (p) against the assign-
ments v = 0 and v = 1, respectively. For each
mutual exclusion constraint c between two vari-
ables v1 and v2, we add a binary weighted con-
straint with weights− log (p/2),− log (1−p/2),
− log (1 − p/2) and − log(p/2) against the as-
signments (v1 = 0, v2 = 0), (v1 = 0, v2 = 1),
(v1 = 1, v2 = 0), and (v1 = 1, v2 = 1), respec-
tively.

Solve a Weighted Constraint Satisfaction
Problem (WCSP) defined on the weighted con-
straints. We use the WCSP-LIFT solver based
on the idea of the Constraint Composite Graph
(CCG)(Xu et al., 2017) for exploiting structure in
combinatorial optimization problems. The WCSP
solver finds an optimal assignment of values to all
Boolean variables that minimizes the total weight.
This optimal assignment is the top hypothesis of
the original problem. To generate the kth hypoth-
esis, we construct a new WCSP that includes all
the weighted constraints described above as well
as additional constraints that disallow the previ-
ously generated k − 1 hypotheses.

Focus hypothesis generation to a subgraph.
Step 1 identifies the Entry Points. From the full
KG, we can retrieve a subgraph of knowledge el-

ements that are within n hops from these Entry
Points, for some user-specified value of n. For
each of the top k hypotheses, we discard the ele-
ments that do not exist in the subgraph to produce
a hypothesis that is relevant to the topic of interest
specified in the “information need”.

Scoring the hypotheses. Each time we solve
a WCSP instance, we get an optimal assignment
as well as a total weight w. The score of the hy-
pothesis is then e−w, using the transformation rule
that defined weighted constraints from confidence
values.

10 Conclusion and Future Work

Acknowledgments

This work was supported by the U.S. DARPA
AIDA Program No. FA8750-18-2-0014,
LORELEI Program No. HR0011-15-C-0115, Air
Force No. FA8650-17-C-7715, NSF IIS-1523198
and U.S. ARL NS-CTA No. W911NF-09-2-0053.
The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
here on.

References
Automated phrase mining from massive text corpora.

Mohamed Al-Badrashiny, Jason Bolton, Arun Tejasvi
Chaganty, Kevin Clark, Craig Harman, Lifu Huang,
Matthew Lamm, Jinhao Lei, Di Lu, Xiaoman Pan,
et al. 2017. Tinkerbell: Cross-lingual cold-start
knowledge base construction. In TAC.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 17th international conference on Compu-
tational linguistics-Volume 1, pages 86–90. Associ-
ation for Computational Linguistics.

D. Blei, A. Ng, and M. Jordan. 2003. Latent dirich-
let allocation. the Journal of Machine Learning Re-
search, 3:993–1022.

Jiawei Chen, Yin Cui, Guangnan Ye, Dong Liu, and
Shih-Fu Chang. 2014. Event-driven semantic con-
cept discovery by exploiting weakly tagged internet

images. In Proceedings of International Conference
on Multimedia Retrieval, page 1. ACM.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dy-
namic multi-pooling convolutional neural networks.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural
Language Processing, pages 54–57. Association for
Computational Linguistics.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. In Trans-
action of Association for Computational Linguistics.

Lingjia Deng, Yoonjung Choi, and Janyce Wiebe.
2013. Benefactive/malefactive event and writer at-
titude annotation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
120–125.

Martin Engilberge, Louis Chevallier, Patrick Pérez, and
Matthieu Cord. 2018. Finding beans in burgers:
Deep semantic-visual embedding with localization.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3984–
3993.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231.

Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. 2010.
The pascal visual object classes (voc) challenge. In-
ternational journal of computer vision, 88(2):303–
338.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Bing Qin,
Heng Ji, and Ting Liu. 2016a. A language-
independent neural network for event detection. In
The 54th Annual Meeting of the Association for
Computational Linguistics, page 66.

Xiaocheng Feng, Heng Ji, Duyu Tang, Bing Qin, and
Ting Liu. 2016b. A language-independent neural
network for event detection. In Proceeddings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics.

Ross Girshick. 2015. Fast r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.

George Gkotsis, Sumithra Velupillai, Anika Oellrich,
Harry Dean, Maria Liakata, and Rina Dutta. 2016.

Don’t let notes be misunderstood: A negation de-
tection method for assessing risk of suicide in men-
tal health records. In Proceedings of the Third
Workshop on Computational Lingusitics and Clin-
ical Psychology, pages 95–105.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding, 2013 IEEE Workshop on.

Yu Hong, Di Lu, Dian Yu, Xiaoman Pan, Xiaobin
Wang, Yadong Chen, Lifu Huang, and Heng Ji.
2015. Rpi blender tac-kbp2015 system description.
In Proc. Text Analysis Conference (TAC2015).

Lifu Huang, Heng Ji Avirup Sil, and Radu Florian.
2017a. Improving slot filling performance with at-
tentive neural networks on dependency structures.
In Proc. Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP2017).

Lifu Huang, Heng Ji, Kyunghyun Cho, and Clare R.
Voss. 2017b. Zero-Shot Transfer Learning for Event
Extraction. arXiv preprint arXiv:1707.01066.

Lifu Huang, Jonathan May, Xiaoman Pan, Heng Ji,
Xiang Ren, Jiawei Han, Lin Zhao, and James A.
Hendler. 2017c. Liberal entity extraction: Rapid
construction of fine-grained entity typing systems.
Big Data, 5.

Anthony Hunter and Sébastien Konieczny. 2008. Mea-
suring inconsistency through minimal inconsistent
sets. In Proceedings of the Eleventh International
Conference on Principles of Knowledge Representa-
tion and Reasoning, KR’08, pages 358–366. AAAI
Press.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification.

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio
Ferrari, Sami Abu-El-Haija, Alina Kuznetsova,
Hassan Rom, Jasper Uijlings, Stefan Popov, Sha-
hab Kamali, Matteo Malloci, Jordi Pont-Tuset,
Andreas Veit, Serge Belongie, Victor Gomes,
Abhinav Gupta, Chen Sun, Gal Chechik, David
Cai, Zheyun Feng, Dhyanesh Narayanan, and
Kevin Murphy. 2017. Openimages: A public
dataset for large-scale multi-label and multi-
class image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html.

Henry E. Kyburg. 1961. Probability and the logic of
rational belief. Wesleyan University Press.

Guillaume Lample, Miguel Ballesteros, Kazuya
Kawakami, Sandeep Subramanian, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In Proceeddings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics Human Language Tech-
nologies.

https://doi.org/10.1089/big.2017.0012
https://doi.org/10.1089/big.2017.0012

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 529–539. Association for Computa-
tional Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 188–197. Association for Computational
Linguistics.

Hongzhi Li, Joseph G Ellis, Heng Ji, and Shih-Fu
Chang. 2016. Event specific multimodal pattern
mining for knowledge base construction. In Pro-
ceedings of the 2016 ACM on Multimedia Confer-
ence, pages 821–830. ACM.

Qi Li and Heng Ji. 2014. Incremental joint extrac-
tion of entity mentions and relations. In Proc. the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL2014).

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014.
Constructing information networks using one sin-
gle model. In Proc. the 2014 Conference on Em-
pirical Methods on Natural Language Processing
(EMNLP2014).

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proc. the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL2013).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Ying Lin, Shengqi Yang, Veselin Stoyanov, and Heng
Ji. 2018. A multi-lingual multi-task architecture
for low-resource sequence labeling. In Proc. The
56th Annual Meeting of the Association for Compu-
tational Linguistics (ACL2018).

Xiao Ling, Sameer Singh, and Daniel Weld. 2015. De-
sign challenges for entity linking. Transactions of
the Association for Computational Linguistics, 3.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. 2017. Progressive neural archi-
tecture search. arXiv preprint arXiv:1712.00559.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, and Ming
Zhou. 2015. A dependency-based neural network
for relation classification. In Proceeddings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang,
and Heng Ji. 2018. Visual attention model for name
tagging in multimodal social media. In Proc. The
56th Annual Meeting of the Association for Compu-
tational Linguistics (ACL2018).

O. Medelyan and C. Legg. 2008. Integrating cyc and
wikipedia: Folksonomy meets rigorously defined
common-sense. In Proc. AAAI 2008 Workshop on
Wikipedia and Artificial Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Thien Huu Nguyen and Ralph Grishman. 2015a. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing.

Thien Huu Nguyen and Ralph Grishman. 2015b. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of NAACL Workshop
on Vector Space Modeling for NLP.

Thien Huu Nguyen and Ralph Grishman. 2016. Joint
event extraction via recurrent neural networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised entity link-
ing with abstract meaning representation. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics Human Language Technologies.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proc. the 55th Annual Meeting of the Association
for Computational Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Karin Kipper Schuler. 2005. Verbnet: A broad-
coverage, comprehensive verb lexicon.

Ge Shi, Chong Feng, Lifu Huang, Boliang Zhang,
Heng Ji, Lejian Liao, and Heyan Huang. 2018.
Genre separation network with adversarial training
for cross-genre relation extraction. In Proc. 2018
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP2018).

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions Session at EACL 2012, Avignon, France. As-
sociation for Computational Linguistics.

Robert L Taft. 1970. Name Search Techniques. New
York State Identification and Intelligence System,
Albany, New York, US.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale
information network embedding. In WWW, pages
1067–1077. International World Wide Web Confer-
ences Steering Committee.

Veronika Vincze. 2015. Uncertainty detection in natu-
ral language texts. Ph.D. thesis, szte.

Hong Xu, T. K. Satish Kumar, and Sven Koenig. 2017.
The Nemhauser-Trotter reduction and lifted mes-
sage passing for the weighted CSP. In Proceedings
of the 14th International Conference on Integration
of Artificial Intelligence and Operations Research
Techniques in Constraint Programming (CPAIOR),
pages 387–402.

Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi-Hong
Deng. 2016. A position encoding convolutional
neural network based on dependency tree for rela-
tion classification. In Proceedings of the Empirical
Methods on Natural Language Processing.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics, 2:67–78.

Dian Yu, Xiaoman Pan, Boliang Zhang, Lifu Huang,
Di Lu, Spencer Whitehead, and Heng Ji. 2016. Rpi
blender tac-kbp2016 system description.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceeddings of
the 25th International Conference on Computational
Linguistics.

Boliang Zhang, Di Lu, Xiaoman Pan, Ying Lin, Hal-
idanmu Abudukelimu, Heng Ji, and Kevin Knight.
2017a. Embracing non-traditional linguistic re-
sources for low-resource language name tagging. In
Proc. the 8th International Joint Conference on Nat-
ural Language Processing (IJCNLP 2017).

Boliang Zhang, Spencer Whitehead, Lifu Huang, and
Heng Ji. 2018a. Global attention for name tagging.
In Proc. the SIGNLL Conference on Computational
Natural Language Learning (CONLL2018).

Boliang Zhang, Spencer Whitehead, Lifu Huang, and
Heng Ji. 2018b. Global attention for name tagging.
In Proc. the SIGNLL Conference on Computational
Natural Language Learning (CONLL2018).

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and
Yu Qiao. 2016. Joint face detection and alignment
using multitask cascaded convolutional networks.
IEEE Signal Processing Letters, 23(10):1499–1503.

Tongtao Zhang and Heng Ji. 2018. Event extraction
with generative adversarial imitation learning. In
arxiv.

Tongtao Zhang, Spencer Whitehead, Hanwang Zhang,
Hongzhi Li, Joseph Ellis, Lifu Huang, Wei Liu,
Heng Ji, and Shih-Fu Chang. 2017b. Improving
event extraction via cross-modal integration. In
Proc. the 25th ACM International Conference on
Multimedia (ACMMM2017).

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude
Oliva, and Antonio Torralba. 2016. Learning deep
features for discriminative localization. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2921–2929.

https://doi.org/10.1007/978-3-319-59776-8_31
https://doi.org/10.1007/978-3-319-59776-8_31

