
Decision Tree Learning-Inspired Dynamic Variable Ordering
for the Weighted CSP

Hong Xu∗ and Kexuan Sun and Sven Koenig and T. K. Satish Kumar
University of Southern California, Los Angeles, CA 90089, United States of America

{hongx, kexuansu, skoenig}@usc.edu, tkskwork@gmail.com

Abstract
The weighted constraint satisfaction problem (WCSP) is a
powerful mathematical framework for combinatorial opti-
mization. The branch-and-bound search paradigm is very
successful in solving the WCSP but critically depends on
the ordering in which variables are instantiated. In this paper,
we introduce a new framework for dynamic variable ordering
for solving the WCSP. This framework is inspired by regres-
sion decision tree learning. Variables are ordered dynamically
based on samples of random assignments of values to vari-
ables as well as their corresponding total weights. Within this
framework, we propose four variable ordering heuristics (sdr,
inv-sdr, rr and inv-rr). We compare them with many state-
of-the-art dynamic variable ordering heuristics, and show that
sdr and rr outperform them on many real-world and random
benchmark instances.

Introduction
The weighted constraint satisfaction problem (WCSP) is
a combinatorial optimization problem. It is a generaliza-
tion of the constraint satisfaction problem (CSP) in which
the constraints are no longer “hard.” Instead, each tuple
in a constraint—i.e., an assignment of values to all vari-
ables in that constraint—is associated with a non-negative
weight (sometimes referred to as “cost”). The goal is to
find a complete assignment of values to all variables from
their respective domains such that the total weight is mini-
mized (Bistarelli et al. 1999), called an optimal solution.

Formally, the WCSP is defined by a triplet 〈X ,D, C〉,
where X = {X1, X2, . . . , XN} is a set of N variables,
D = {D(X1),D(X2), . . . ,D(XN)} is a set of N domains
with discrete values, and C = {C1, C2, . . . , CM} is a set of
M weighted constraints. Each variable Xi ∈ X can be as-
signed a value in its associated domain D(Xi) ∈ D. Each
constraint Ci ∈ C is defined over a certain subset of the vari-
ables S(Ci) ⊆ X , called the scope of Ci. Ci associates a
non-negative weight with each possible assignment of val-
ues to the variables in S(Ci). The goal is to find a complete
assignment of values to all variables in X from their respec-
tive domains that minimizes the sum of the weights specified

∗Now at International Business Machines (IBM) Corp.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by each constraint in C (Bistarelli et al. 1999). This combi-
natorial task can equivalently be characterized by having to
compute

arg min
a∈A(X)

(
E(a) ≡

∑
Ci∈C

ECi
(a|S(Ci))

)
, (1)

where A(X) represents the set of all |D(X1)| × |D(X2)| ×
. . . × |D(XN)| complete assignments to all variables in X ,
a|S(Ci) represents the projection of a complete assignment
a onto the subset of variables in S(Ci), andECi

(·) is a func-
tion that maps each a|S(Ci) to its associated weight in Ci.

The WCSP can be used to model a wide range of useful
combinatorial problems arising in a large number of real-
world application domains. For example, in artificial intel-
ligence, it can be used to model user preferences (Boutilier
et al. 2004) and combinatorial auctions. In bioinformatics,
it can be used to locate RNA motifs (Zytnicki, Gaspin, and
Schiex 2008). In statistical physics, the energy minimization
problem on the Potts model is equivalent to that on its cor-
responding pairwise Markov random field (Yedidia, Free-
man, and Weiss 2003), which in turn can be modeled as the
WCSP. In computer vision, it can be used for image restora-
tion and panoramic image stitching (Boykov, Veksler, and
Zabih 2001; Kolmogorov 2005).

While there exist other techniques such as those based
on integer linear programming (Xu, Koenig, and Kumar
2017), satisfiability modulo theories (Bofill et al. 2014),
and message passing (Kolmogorov 2006; Xu, Kumar, and
Koenig 2017), branch-and-bound search is the cornerstone
of many state-of-the-art modern WCSP solvers, such as
toulbar2 (Hurley et al. 2016) and aolibWCSP (Mari-
nescu and Dechter 2007). In these search-based solvers,
dynamic variable ordering (DVO) is an important ingredi-
ent, and how to determine the orderings is a critical ques-
tion. Indeed, it has been shown that, for a given WCSP in-
stance, different DVO heuristics can lead to dramatically
different search efficiencies for various branch-and-bound
search techniques, such as those based on local consis-
tencies (Heras and Larrosa 2006; de Givry et al. 2005;
Cooper et al. 2010), AND/OR search spaces (Marinescu and
Dechter 2006), and dead-end elimination (de Givry, Prest-
wich, and O’Sullivan 2013). Therefore, studies on DVO

heuristics are necessary.
In this paper, we derive DVO heuristics from recent ad-

vances in machine learning. In particular, we use regression
decision tree learning (Breiman et al. 1984), an important
machine learning algorithm. A decision tree is a tree where
each leaf node is a label and each internal node, called a
decision node, consists of different values of a feature that
lead to different branches below that node. A regression de-
cision tree has label values that are real numbers, while the
values of the features can still be discrete. A regression de-
cision tree learning algorithm takes some training samples
as its input, where each training sample consists of the val-
ues of some features and a label. The goal of this algorithm
is to build a decision tree such that, given test samples in
which the labels are missing, the prediction of these labels
following the decision tree is accurate.

A branch-and-bound search tree for a WCSP instance is
quite similar to a regression decision tree: A variable is anal-
ogous to a feature, and a total weight is analogous to a label.
Each internal node in a search tree assigns different values to
a single variable leading to different branches below it. Each
leaf node is associated with a total weight corresponding to
a complete assignment, indicated by the path from the root
node to it. Due to these similarities, introducing techniques
from regression decision tree learning can be beneficial to
branch-and-bound search. However, despite the existence of
dedicated research on DVO heuristics (Heras and Larrosa
2006), to the best of our knowledge, none of it has ever men-
tioned techniques originating from regression decision tree
learning.

In this paper, we introduce a new framework of DVO
heuristics for the WCSP inspired by regression decision
tree learning. This framework orders variables dynamically
based on samples of random assignments of values to vari-
ables and their total weights. Within this framework, we pro-
pose four variable ordering heuristics (sdr, inv-sdr, rr and
inv-rr). We compare them with many state-of-the-art DVO
heuristics, and show that sdr and rr outperform them on
many real-world and random benchmark instances.

Solving the WCSP
with Branch-and-Bound Search

The WCSP can be solved with branch-and-bound search,
which explores a search tree with each node representing an
assignment of values to variables (Larrosa and Schiex 2004).
In a search tree, internal nodes represent partial assignments,
whereas leaf nodes represent complete assignments. At any
point in time during the search, the currently known best so-
lution a†, which we refer to as the currently best solution,
and its total weight w† are maintained. At each node, the
search algorithm computes the total weight wa correspond-
ing to the assignment of that node. If wa ≥ w†, the subtree
below this node is pruned. The details of this algorithm are
provided in Algorithm 1.

The procedure of enforcing local consistencies can be in-
tegrated with branch-and-bound search (Larrosa and Schiex
2004). This is done via associating each node in the search
tree with a smaller WCSP instance, which we refer to as

a WCSP subinstance. A WCSP subinstance P ′ = 〈X ′ =
X \ {X},D′, C′〉 of a WCSP instance P = 〈X ,D, C〉 with
respect to an assignment X = x to a single variable X ∈ X
is a WCSP instance in which the total weight of any assign-
ment a of values to variables in X ′ plus ECX

({X = x})
equals that of a ∪ {X = x} in P , i.e.,

∀a ∈ A(X ′) :
∑

C′∈C′
EC′(a|S(C ′)) + ECX

({X = x})

=
∑
C∈C

EC(a ∪ {X = x}|S(C)),
(2)

where CX is the unary constraint whose scope is {X}. For
each node, its associated WCSP subinstance can be con-
structed from the WCSP subinstance associated with its par-
ent node by reducing binary constraints that involve the
newly assigned variable to unary constraints on other vari-
ables. The details of this procedure are provided in Algo-
rithm 2. The construction of WCSP subinstances enables the
search algorithm to enforce local consistency on the WCSP
instance associated with each node in the search tree before
proceeding to the next node.

Integrating local consistency enforcement with branch-
and-bound search yields multiple benefits. For example, it
may detect global inconsistency before the search algorithm
reaches a leaf node and therefore reduces the search space.
Even if global inconsistency is not detected, it may reduce
the domain sizes of variables, which also helps to reduce the
search space. Algorithm 3 shows the basic framework of lo-
cal consistency enforcement. In this paper, since our focus
is on DVO heuristics, we only enforce weighted arc con-
sistency (WAC) using the WAC-3 algorithm (Larrosa and
Schiex 2004). The reason for our choice is that WAC is a
fundamental type of local consistency for the WCSP, and
using it as a common local consistency allows us to focus on
the difference between DVO heuristics.

Known DVO Heuristics
In this section, we review different DVO heuristics from
the literature. Intuitively, they all try to first instantiate the
variables that are the most constrained, as defined by each
heuristic’s own measurement.

Domain Size and Degree-Based Heuristics
We consider the following well-known DVO heuristics that
are based on the domain sizes and degrees of variables. The
degree of a variable is defined as the number of constraints
whose scopes include the variable.

• Domain size (dom) (Heras and Larrosa 2006): Choose the
variable with the smallest domain size after enforcing lo-
cal consistency at each search node.

• Degree (deg) (Heras and Larrosa 2006): Choose the vari-
able with the largest degree after enforcing local consis-
tency at each search node.

• Weighted degree (wdeg) (Boussemart et al. 2004): Let
wdeg(C) be the “wdeg”1 of each constraint C ∈ C, and

1This is referred to as “weight” in (Boussemart et al. 2004),

Algorithm 1: Solve the WCSP using branch-and-
bound search.

1 Function SolveWCSP(P)
Input: P : A WCSP instance.
Output: The optimal solution of P and its total

weight.
2 return BranchAndBound(P , ∅, 0, ∅, +∞);
3 Function BranchAndBound(P = 〈X ,D, C〉, a,

wa, a†, w†)
Input: P = 〈X ,D, C〉: A WCSP instance.
Input: a: A partial or complete assignment of

values to variables.
Input: wa: The total weight associated with a.
Input: a†: The currently best solution.
Input: w†: The weight of the currently best

solution.
Output: Updated currently best solution and its

total weight.
4 if X = ∅ then
5 if wa < w† then
6 return a,wa;

7 else
8 (P ′ = 〈X ′,D′, C′〉), global consist :=

EnforceLocalConsistency(P ,
w† − wa);

9 if ¬global consist then
10 return a†, w†;
11 X := ChooseVariable(P ′);
12 D := OrderDomain(X,P ′);
13 foreach x ∈ D do
14 a′ := a ∪ {X = x};
15 wa′ := wa + EC′

X
({X = x});

16 P ′′ :=
ConstructWCSPSubInstance(X ,
x, P ′);

17 a†, w† := BranchAndBound(P ′′, a′,
wa′ , a†, w†);

18 return a†, w†;

wdeg(X) ≡
∑

C∈{C | X∈S(C)} wdeg(C) be the wdeg of
each variable X ∈ X . For each constraint C ∈ C, ini-
tialize wdeg(C) to one. During the enforcement of lo-
cal consistency (as per Algorithm 1), every time the do-
main of a variable X becomes ∅, increase the last visited
constraint’s wdeg by 1. Choose the variable X with the
largest wdeg.

• Domain size/weighted degree (dom/wdeg) (Boussemart
et al. 2004): Choose the variable with the smallest domain
size/wdeg ratio.

but we refer to it as “wdeg” to avoid confusion with the WCSP
terminology.

Algorithm 2: Construct a WCSP subinstance.
1 Function ConstructWCSPSubInstance(X , x,

P = 〈X ,D, C〉)
Input: X , x: The variable and a value in its

domain (X = x) to construct a WCSP
instance with respect to.

Input: P = 〈X ,D, C〉: The WCSP instance to
construct a subinstance of.

Output: A WCSP subinstance of P with respect
to X = x.

2 P ′ := 〈X ′ = X ,D′ = D, C′ = C \ {CX}〉;
3 foreach Y ∈ {Y ∈ X ′ | CXY ∈ C′} do

// CXY is the constraint whose scope is {X,Y }
4 foreach y ∈ D′(Y) do
5 ECY

({Y = y}) := ECY
({Y =

y}) + ECXY
({X = x, Y = y});

6 C′ := C′ \ {CXY };
7 X ′ := X ′ \ {X};
8 return P ′;

Algorithm 3: Enforce local consistency on a WCSP
instance P .

1 Function EnforceLocalConsistency(P,w)
Input: P : The WCSP instance to enforce local

consistency on.
Input: w: An upper bound on the total weight of

an optimal solution of P .
Output: Whether global inconsistency is

detected.
2 Enforce local consistency on P with w as the

upper bound (we denote the output WCSP
instance as P ′);

3 if global inconsistency is detected then
4 return P ′, FALSE;
5 else
6 return P ′, TRUE;

Cost-Based Heuristics
Cost-based heuristics select variables based on costs. One
approach (suc) (Heras and Larrosa 2006) is to always
choose the variable X with the smallest sum of unary costs∑

x∈D(X)ECX
(x).

Activity-Based Heuristics
Activity-based heuristics (abs) (Michel and Van Hentenryck
2012) select the variable whose domain was most often re-
duced when enforcing local consistency. Let activity(X)
be the activity of a variable X ∈ X and initialize it to
|D(X)| before search. When enforcing local consistency,
if the domain of a variable X is reduced, activity(X) :=
λ · activity(X) + 1, where 0 ≤ λ ≤ 1 is a decay parame-
ter that favors recent activities. Choose a variable with the
smallest |D(X)|/activity(X). At a search node k where
X = x is instantiated, the activity activityk(X = x)

Algorithm 4: Sampling.
1 Function Sample(P , Ns)

Input: P = 〈X ,D, C〉: The given WCSP
instance.

Input: Ns: Number of samples.
Output: Ns samples.

2 J := ∅;
3 for i← 1 to Ns do
4 (P ′ = 〈X ′,D′, C′〉) := P ;
5 Ji := an empty associative array of size |X |;
6 while X ′ 6= ∅ do
7 Randomly select a variable X ∈ X ′;
8 Select a value x ∈ D′(X) with

probability ∝ 1
EC′

X
(x) ;

9 Ji[X] := x;
10 P ′ :=

ConstructWCSPSubInstance(X ,
x, P ′);

11 J := J ∪ {〈Ji, E(Ji)〉};
12 return J ;

is defined as the number of variables that have their do-
main sizes reduced when enforcing local consistency. The
activity activity(X = x) of {X = x} is updated us-
ing activity(X = x) := (activity(X = x) · (α − 1) +
activityk(X = x))/α, where α ≥ 1 is a parameter. When
ordering domain values, choose a value with the largest ac-
tivity. All activities are initialized by sampling paths accord-
ing to certain distributions in the search tree.

Impact-Based Heuristics
Impact-based heuristics (ibs) (Refalo 2004) select the
variable with the highest expected impact. The impact
impact(X = x) of an assignment of a value x to a variable
X indicates the potential reduction of the search space after
instantiating X . Similarly to the activity of an assignment in
abs, it is updated using impact(X = x) := (impact(X =
x) · (α − 1) + impactk(X = x))/α. At a search node k,
the impact impactk(X) of a variable X is defined as the
sum of all impacts of assignments of values to X minus
its domain size at that search node, i.e., impactk(X) =∑

x∈D(X) impact(X = x) − |D(X)|. Choose a variable
with the largest impact and a value with the smallest impact.

Regression Decision Tree Learning-Inspired
Heuristics

We create a new framework of DVO heuristics based on
the idea of learning from randomly sampled assignments,
which is inspired by regression decision tree learning al-
gorithms. In this framework, the DVO heuristics are based
on some measurements of samples of randomly selected as-
signments and their corresponding total weights. (The de-
tails of the sampling method are provided in Algorithm 4.)
The details of the DVO heuristics to replace the function

Algorithm 5: Choose a variable based on sampling.
1 Function ChooseVariableSampling(P,Ns)

Input: P = 〈X ,D, C〉: A WCSP instance.
Input: Ns: Number of samples.
Output: The next variable to assign a value to.

2 J := Sample(P , Ns);
3 foreach X ∈ X do
4 Compute Measurement(X, J) of X in J ;
5 return arg maxX∈X Measurement(X, J);

X1

X2 0 1

0 1 2
1 102 3

(a) Constraint C1

X2

X3 0 1 2

0 1 2 3
1 102 3 101

(b) Constraint C2

#
#
#
#
#
#

X1 X2
X3

#
#
#
#
#

 #

0 1

#
#
#

#
#
#

0 1

#
#

 #
#

#
#

0
1

2

(c) Search tree

Figure 1: Illustrates the intuition behind sdr. The example
WCSP instance has three variables X1, X2 and X3. It has
two constraints C1 and C2, illustrated in (a) and (b), re-
spectively. (c) illustrates the first step of building the search
tree, i.e., choosing the first variable and its domain value.
Each rectangle represents a search node. The circles in each
rectangle illustrate the distribution of total weights of all as-
signments of values to variables in that search node. Each
empty/filled circle in these rectangles represents a low-cost
(with a total weight less than 10)/high-cost (with a total
weight higher than 100) assignment. Choosing X1, which
has the largest SDR, is the best option among the three,
since the branch of X1 = 0 offers the highest probability
of reaching a low-weight leaf, which increases the probabil-
ity of pruning other parts of the search tree later during the
search.

ChooseVariable() in Algorithm 1 are provided in Al-
gorithm 5. It chooses a variable with the largest measure-
ment. Here, we consider the following measurements.

• Standard deviation reduction (SDR) (sdr): The measure-
ment is the SDR of the samples J with respect to each
variable X . It is defined as

SDR(X,J) = SD(J)

− 1

|J |
∑

x∈D(X)

|J [X = x]| · SD(J [X = x]),

(3)

where SD(J) is the standard deviation of all total weights
in J , |J | is the number of samples in J , and J [X = x] is
the subset of J in which X = x. In the actual implemen-
tation of this algorithm, the computation of SD(J) is not
required. However, we use it to relate our measurement to
the concept of the SDR. This measurement is inspired by
the regression decision tree learning algorithm (Breiman
et al. 1984). Figure 1 illustrates the intuition behind sdr.
Algorithm 4 samples with a bias towards smaller weights.
The reason for having this bias is that search nodes cor-
responding to assignments with high weights are in gen-
eral less likely to be reached, and therefore samples cor-
responding to these assignments are less useful.

• Inverse SDR (inv-sdr): Similar to sdr, but negated SDRs
are used as the measurements instead of SDRs. The in-
tuition behind this approach is that this can lead to more
pruning within the subtree due to a larger variance of the
total weights in the subtree.

• Range reduction (RR) (rr): The measurement is the RR of
the samples J with respect to each variableX . The defini-
tion of RR is similar to that of SDR, with all standard de-
viations in Equation (3) replaced by ranges, i.e., the max-
imum total weight minus the minimum total weight in the
samples. It is a variant of sdr and shares similar intuition
with it.

• Inverse RR (inv-rr): Similar to rr, but negated RRs are
used as the measurements instead of RRs. It is a variant
of inv-sdr.

Under this framework, OrderDomain() orders each
value x in the domain of a variable X in ascending order
with respect to the average of the weights over all samples
with x assigned to X . The intuition is that, by first focusing
the search along a branch that is more likely to produce an
assignment with a small total weight, the more likely it is to
prune other regions of the search space. We also note that, in
practice, the total weights of the samples per se also provide
bounds that could be useful for pruning the search tree.

Discussion: The Number of Samples
In Algorithm 5, the number of samples Ns is a parameter.
However, its choice poses a dilemma: If Ns is too small,
then Algorithm 5 may not have enough samples to provide
useful guidance for the search; ifNs is too large, then it may
take too much time to compute the DVO heuristic at a search
node and thus the entire procedure is self-defeating.

Here, to strike a balance, we propose the number of sam-
ples at each search node k to be the total number of do-
main values of all variables in the WCSP instance Pk =
〈Xk,Dk, Ck〉 of k, i.e., Ns =

∑
X∈Xk

|Dk(X)|. Although
the true efficiency must be proven by experiments, our ratio-
nale for the proposal is as follows.

(a) The number of samples is not too large:
• The time complexity of the search algorithm is simi-

lar to that of those search algorithms that spend a con-
stant time at each search node. In our search frame-
work, at a search node k of depth dk in the search

tree, the time complexity to order the variables is
O
(
D̂ · (|X | − dk)

3
)

, where D̂ = maxX∈X |D(X)| is
the maximum domain size of all variables. Each sam-
ple requires O

(
(|X | − dk)

2
)

time to generate and the

number of samples is O
(
D̂ · (|X | − dk)

)
. (In practice,

if samples in previous search nodes are reused, this com-
plexity can be further reduced.) Therefore, the time com-
plexity of our DVO heuristics at all search nodes is

O

|X |−1∑
dk=0

[
D̂ · (|X | − dk)

3 · D̂dk

] . (4)

For either a bounded D̂ or |X |, this can be simplified to
O(D̂|X |), which is the same time complexity as that of
DVO heuristics that spend constant time at each search
node.

• The probability of producing two identical samples at a
search node is low. We assume that all assignments of
values to variables are sampled uniformly at random. At
search node k, the probability Pk that at least two samples
are identical is

Pk = 1−
∏∑

X∈Xk
|Dk(X)|−1

i=0 [|A(Xk)| − i]
|A(Xk)|

∑
X∈Xk

|Dk(X)| . (5)

If the number of variables approaches infinity and all do-
main sizes remain finite, Pk approaches 0.

(b) The number of samples is not too small:
• In our algorithm, at each search node, it is best to use the

actual standard deviation of all assignments of values to
uninstantiated variables when computing SDR. In reality,
as shown in Algorithm 5, we can only use the standard de-
viation of samples to estimate the actual standard devia-
tion. Such an estimate, in statistical terminology, is called
a point estimate. The quantity used to do the estimate, the
standard deviation of the samples in our case, is referred
to as the estimator. The quality of an estimator can be
assessed using its standard deviation, related to the effi-
ciency of the estimator—the lower the standard deviation,
the higher the efficiency is.
We now argue that the efficiency of our estimator de-
creases slowly as the problem size increases. We as-
sume that the weights of all constraints independently
follow a Gaussian distribution N (µ, σ2). Then, at search
node k, the total weight of random assignments follows
N (|Ck| · µ, |Ck| · σ2). By definition, the variance SD(J)

2

of Ns samples J is

SD(J)
2

=

 ∑
〈Ji,E(Ji)〉∈J

(E(Ji)− Ē(J))
2

 /Ns, (6)

where Ē(J) =
[∑
〈Ji,E(Ji)〉∈J E(Ji)

]
/Ns. With |Ck| ·µ

being the estimate of Ē(J),Ns·SD(J)
2
/
(
|Ck| · σ2

)
, seen

0

50
de

g
sdr sdr-bound inv-sdrinv-sdr-bound rr rr-bound inv-rr inv-rr-bound

0

50

do
m

0

50

su
c

0

50

w
de

g

0

50

do
m

/w
de

g

0

50

ab
s

-50 0 50
0

50

ib
s

-50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50 -50 0 50

Figure 2: Compares the numbers of visited search nodes
between our DVO heuristics and the existing DVO heuris-
tics on 50 random benchmark instances with n = 20. Each
subplot compares one of our DVO heuristics and one ex-
isting DVO heuristic. The x-axes indicate the relative num-
bers of visited search nodes, i.e., (number of visited search
nodes of the existing DVO heuristic - number of visited
search nodes of our DVO heuristic)/number of visited search
nodes of our DVO heuristic. The y-axes indicate the num-
bers of benchmark instances. Curves in the left halves (with
x-values smaller than zero) are cumulative histograms, and
curves in the right halves (with x-values greater than zero)
are reverse cumulative histograms. Larger areas under the
curves in the right halves and smaller areas under the curves
in the left halves indicate smaller relative numbers of vis-
ited search nodes (i.e., higher search node efficiency) of our
DVO heuristics.

as a random variable, is the sum of the squares ofNs inde-
pendent standard normal random variables, and thus fol-
lows a χ2-distribution with a degree of freedom Ns and
thus has a standard deviation of

√
2Ns. This implies that

SD(J)
2 itself (seen as a random variable) has a standard

deviation of |Ck| · σ2
√

2/Ns. In our algorithm, Ns in-
creases linearly with the number of variables (assuming
that D̂ is bounded). This implies that the standard devia-
tion of SD(J)

2 increases sublinearly with respect to |Ck|.
The increment is even smaller if we consider SD(J) in-
stead of SD(J)

2.

Experimental Evaluation
In this section, we present an experimental evaluation of sdr,
inv-sdr, rr, and inv-rr. We compare them with dom, deg,
wdeg, dom/wdeg, suc, abs, and ibs. Since the total weights
of the samples also provide bounds that can be useful for
pruning the search tree, we also experimented with variants
of sdr, inv-sdr, rr, and inv-rr, in which the smallest to-
tal weights of existing samples are also used as bounds at

0 10 20 30 40 50
Number of Benchmark Instances

10 1

100

101

102

103

104

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

deg
dom
suc
wdeg
dom/wdeg

abs
ibs
sdr
rr

Figure 3: Shows the runtime distribution of all DVO heuris-
tics for n = 20. Each curve represents a DVO heuristic and
shows the runtimes for various numbers of benchmark in-
stances for this DVO heuristic. The runtimes of all 50 ran-
dom benchmark instances are sorted for each DVO heuris-
tic in ascending order. This allows us to consider the best
cases for each number of benchmark instances for each DVO
heuristic. The y-axis is in logarithmic scale, which means
that a slight gap between two curves may represent orders
of magnitude of difference. (This figure should be viewed in
color.)

each search node during the search. We refer to these vari-
ants as sdr-bound, inv-sdr-bound, rr-bound, and inv-rr-
bound, respectively. In order to make our implementation
more efficient (in practice), each time we need to sample
(Algorithm 4) in a regression decision tree-inspired heuris-
tic, we cache the samples and reuse as many previous appli-
cable samples as possible.

In our experiments, all heuristics are implemented in
C++, compiled by GCC 6.3.0 with the “-O3” option. All
real-world benchmark instances are run on a GNU/Linux
workstation (Ubuntu 16.04) with Intel Xeon Processor E5-
2676 v3 (30MB Cache, 2.40GHz) and 990MB RAM. All
random benchmark instances were run on a GNU/Linux
workstation (Debian 9) with Intel Xeon Processor E3-1240
v3 (8MB Cache, 3.4GHz) and 16GB RAM.

The real-world benchmark instances are from (Hurley et
al. 2016)2. These benchmark instances include the Proba-
bilistic Inference Challenge 2011, the Computer Vision and
Pattern Recognition OpenGM2 benchmark, the Weighted
Partial MaxSAT Evaluation 2013, the MaxCSP 2008 Com-
petition, the MiniZinc Challenge 2012 & 2013 and the
CFLib (a library of cost function networks). Since the pur-
pose of the experiments is to compare DVO heuristics, other
parts of the branch-and-bound search algorithm are not al-
gorithmically tailored to them to avoid introducing unnec-
essary bias in the experiments. Although this also limits the
sizes of benchmark instances on which we could perform
experiments within a reasonable amount of runtime, we still
select 6 benchmark instances based on the number of vari-
ables (no more than 25) and domain sizes (no more than

2http://genoweb.toulouse.inra.fr/∼degivry/evalgm/

Table 1: Comparison results for real-world benchmark instances (nodes/time)
In

st
an

ce Name ff1 j4* l4* q5* q3* q4*

|X | 2 28 8 25 25 25
|C| 3 196 32 185 185 185
D̂ 5 2 6 5 3 4

A
lg

or
ith

m

sdr 31/3 · 10−4s 833/0.27s 101/0.05s 391,065/4042s -/48h -/48h
sdr-bound 31/3 · 10−4s 637/1.60s 11/0.04s 6/0.94s -/48h -/48h

inv-sdr 31/2 · 10−4s 5491/1.64s 179/0.05s 429,005/4984s -/48h -/48h
inv-sdr-bound 31/2 · 10−4s 667/1.80s 8/0.08s 6/0.94s -/48h -/48h

rr 31/3 · 10−4s 801/2.16s 109/0.16s 1100/9.95s -/48h -/48h
rr-bound 31/1 · 10−2s 665/1.71s 11/0.08s 6/0.97s -/48h -/48h

inv-rr 31/2 · 10−4s 5943/11.97s 429/0.29s 14,677/44.78s -/48h -/48h
inv-rr-bound 31/2 · 10−4s 659/1.58s 10/0.08s 6/0.94s -/48h -/48h

deg 31/1 · 10−4s 3225/1.26s 187/0.04s 27,834,834/48,163s -/48h -/48h
dom 31/9 · 10−5s 8623/5.24s 331/0.08s -/48h -/48h -/48h
suc 31/9 · 10−5s 3491/1.72s 606/0.12s 7,718,377/8867s -/48h -/48h

wdeg 31/9 · 10−5s 8623/5.37s 203/0.15s -/48h -/48h -/48h
dom/wdeg 31/9 · 10−5s 8623/5.29s 331/0.08s -/48h -/48h -/48h

abs 31/2 · 10−4s 3173/2.73s 404/0.33s 1,814,781/911s -/48h -/48h
ibs 31/1 · 10−4s 7045/4.53s 236/0.08s -/48h -/48h -/48h

* The benchmark instance names are johnson8-2-4, langford-2-4, queens-5-5-5, queens-5-5-3, and queens-5-5-4, respectively.

6). We set the runtime limit for each benchmark instance
to 48 hours. Table 1 lists all such benchmark instances and
shows the experimental results on them. With the exception
of 2 benchmark instances that could not be solved within the
runtime limit, our DVO heuristics mostly outperformed the
other DVO heuristics on all other non-trivial benchmark in-
stances. In particular, on queens-5-5-5, the empirically hard-
est solvable benchmark instance in our experiments, there
were orders of magnitude of difference in both the number of
visited search nodes and runtime between our DVO heuris-
tics and other heuristics. In addition, using sample results
as bound during the search process decreases the runtime of
our algorithms.

Due to the lack of relatively small real-world benchmark
instances, we also generate additional random benchmark
instances. Here, we focus on sparse random benchmark in-
stances. We use the Erdős-Rényi (ER) model (Erdős and
Rényi 1959), a basic random graphical model, to generate
these benchmark instances. The ER model has two param-
eters: n (the number of vertices) and p (the probability of
connecting each pair of vertices). We create each random
benchmark instance by first (a) using the ER model to gener-
ate a random graph, and then (b) generating a WCSP bench-
mark instance from it. In each WCSP benchmark instance,
each variable corresponds to a vertex in the random graph
and each constraint corresponds to an edge. The variables in
each constraint C correspond to the two endpoint vertices
of the edge corresponding to C. The weights of constraints
are integers chosen uniformly at random between 1 and 100.
We set n to values ranging from 12 to 20 and p to 0.1 as pa-
rameters of the ER model to generate sparse graphs, which
in turn generate sparse benchmark instances.

Figure 2 compares the numbers of visited search nodes

between our DVO heuristics and the existing DVO heuristics
for n = 20. sdr, sdr-bound, rr and rr-bound clearly out-
perform all other heuristics, while inv-sdr, inv-sdr-bound,
inv-rr, and inv-rr-bound do not perform well. Although
the original regression decision tree learning algorithm uses
SDR as the main criterion for branching, our results show
that, for regression decision tree learning-inspired DVO
heuristics, RR can achieve similar numbers of visited search
nodes as SDR, but is computationally much less expensive.

We also compare the runtimes of all DVO heuristics. Fig-
ure 3 shows the runtime distribution of all DVO heuristics
for n = 20. The curves of sdr and rr lie below the other
curves, indicating that, within the same amount of runtime,
our DVO heuristics solved more benchmark instances than
the existing DVO heuristics, which means that our DVO
heuristics are more efficient.

Since we could not perform experiments on large bench-
mark instances, we analyze the trend of the runtime and the
number of visited search nodes as the number of variables
increases to estimate the efficiency of our DVO heuristics
on large instances. Figure 4 demonstrates how the average
runtime T̄ and the average number of visited search nodes
K̄ vary with the number of variables n ∈ [12, 20] for each
DVO heuristic. Visually, the computational cost of our DVO
heuristics increases less significantly than that of the exist-
ing DVO heuristics in terms of both T̄ and K̄. To analyze
this increment quantitatively, we fit our experimental results
of each DVO heuristic h using log10 T̄ = ah

T̄
n + bh

T̄
and

log10 K̄ = ah
K̄
n+bh

K̄
. The smaller ah

T̄
and ah

K̄
are, the higher

the efficiency of DVO heuristic h is expected to be for large
instances. As shown in Figure 4, asdr

T̄
, asdr

K̄
, arr

T̄
and arr

K̄
are

smaller than those of the existing DVO heuristics. Since we
applied logarithms to T̄ and K̄ when fitting, small differ-

12 14 16 18 20
Number of Variables (n)

103

104

105

106

107

Av
er

ag
e

N
um

be
r

of
 V

is
te

d
N

od
es

(K
)

deg 0.294
dom 0.307
suc 0.341
wdeg 0.323
dom/wdeg 0.307

abs 0.336
ibs 0.309
sdr 0.293
rr 0.282

Figure 4: Shows how the average runtime T̄ (upper panel)
and the average number of visited search nodes K̄ (lower
panel) vary with the number of variables n ∈ [12, 20].
Curves of different color represent different DVO heuristics.
The values of ah

T̄
(upper panel) and ah

K̄
(lower panel) are

shown in the legends. Similar to Figure 3, the y-axes are in
logarithmic scale, which means that a slight difference in ah

T̄

and ah
K̄

may represent orders of magnitutde of difference in
the amount that T̄ and K̄ increase as n increases. (This fig-
ure should be viewed in color.)

ences in ah
T̄

and ah
K̄

may represent orders of magnitude of
differences in efficiency for large instances. This means that
our DVO heuristics are expected to outperform the existing
DVO heuristics significantly for large instances as well. In-
deed, as shown in Table 1 before, our experimental results on
the relatively large real-world benchmark instance queens-
5-5-5 already display huge differences in efficiency between
our DVO heuristics and the existing DVO heuristics.

Conclusion and Future Work
In this paper, we introduced a new extensible framework
of DVO heuristics for the WCSP inspired by regression
decision tree learning. We proposed four DVO heuristics,
namely sdr, inv-sdr, rr and inv-rr. We discussed details of
the intuition behind sdr and rr. We also carefully chose the
number of samples at each search node, and discussed the ra-
tionales behind this choice. Finally, we compared them with
many other state-of-the-art DVO heuristics, and showed that
our DVO heuristics outperformed them on both real-world

and random benchmark instances.
Our work has a wide range of potential future exten-

sions. One potential extension is to improve the efficiency
in producing samples. Our current approach to producing
a sample has a time complexity that is linear in the num-
ber of constraints. However, a Markov chain Monte Carlo
sampling method such as the Hasting-Metropolis algorithm
might significantly improve the efficiency. Another possi-
ble extension is to combine our new DVO heuristics with
other DVO heuristics. Yet another extension is to adapt them
to more specific combinatorial optimization problems such
as the weighted MAX-SAT and integer linear programming
problems.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1724392, 1409987, 1817189, 1837779, and
1935712. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies or the U.S.
government.

References
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-based CSPs and valued
CSPs: Frameworks, properties, and comparison. Constraints
4(3):199–240.
Bofill, M.; Palahı́, M.; Suy, J.; and Villaret, M. 2014. Solving
intensional weighted CSPs by incremental optimization with
BDDs. In the International Conference on Principles and
Practice of Constraint Programming, 207–223.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In the
European Conference on Artificial Intelligence, 146–150.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artifical Intelligence Research 21:135–
191.
Boykov, Y.; Veksler, O.; and Zabih, R. 2001. Fast
approximate energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intelligence
23(11):1222–1239.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and Regression Trees. Chapman and
Hall/CRC.
Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; Zytnicki,
M.; and Werner, T. 2010. Soft arc consistency revisited.
Artificial Intelligence 174(7):449–478.
de Givry, S.; Heras, F.; Zytnicki, M.; and Larrosa, J. 2005.
Existential arc consistency: Getting closer to full arc consis-
tency in weighted CSPs. In the International Joint Confer-
ence on Artificial Intelligence, 84–89.

de Givry, S.; Prestwich, S. D.; and O’Sullivan, B. 2013.
Dead-end elimination for weighted CSP. In the Interna-
tional Conference on Principles and Practice of Constraint
Programming, 263–272.
Erdős, P., and Rényi, A. 1959. On random graphs I. Publi-
cationes Mathematicae 6:290–297.
Heras, F., and Larrosa, J. 2006. Intelligent variable orderings
and re-orderings in DAC-based solvers for WCSP. Journal
of Heuristics 12(4):287–306.
Hurley, B.; O’Sullivan, B.; Allouche, D.; Katsirelos, G.;
Schiex, T.; Zytnicki, M.; and de Givry, S. 2016. Multi-
language evaluation of exact solvers in graphical model dis-
crete optimization. Constraints 21(3):413–434.
Kolmogorov, V. 2005. Primal-dual algorithm for convex
Markov random fields. Technical Report MSR-TR-2005-
117, Microsoft Research.
Kolmogorov, V. 2006. Convergent tree-reweighted message
passing for energy minimization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 28(10):1568–1583.
Larrosa, J., and Schiex, T. 2004. Solving weighted
CSP by maintaining arc consistency. Artificial Intelligence
159(1):1–26.
Marinescu, R., and Dechter, R. 2006. Dynamic orderings
for AND/OR branch-and-bound search in graphical models.
In the European Conference on Artificial Intelligence, 138–
142.
Marinescu, R., and Dechter, R. 2007. Best-first AND/OR
search for graphical models. In the AAAI Conference on
Artificial Intelligence, 1171–1176.
Michel, L., and Van Hentenryck, P. 2012. Activity-based
search for black-box constraint programming solvers. In the
International Conference on Integration of Artificial Intel-
ligence and Operations Research Techniques in Constraint
Programming, 228–243.
Refalo, P. 2004. Impact-based search strategies for con-
straint programming. In the International Conference on
Principles and Practice of Constraint Programming, 557–
571.
Xu, H.; Koenig, S.; and Kumar, T. K. S. 2017. A con-
straint composite graph-based ILP encoding of the Boolean
weighted CSP. In the International Conference on Princi-
ples and Practice of Constraint Programming, 630–638.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017. The
Nemhauser-Trotter reduction and lifted message passing for
the weighted CSP. In the International Conference on In-
tegration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming, 387–402.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Under-
standing belief propagation and its generalizations. Explor-
ing Artificial Intelligence in the New Millennium 8:239–269.
Zytnicki, M.; Gaspin, C.; and Schiex, T. 2008. DARN! A
weighted constraint solver for RNA motif localization. Con-
straints 13(1):91–109.

